Existence of infinitely many minimal hypersurfaces in positive Ricci curvature
Author(s): Coda Marques, Fernando; Neves, André
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr18q1v
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Coda Marques, Fernando | - |
dc.contributor.author | Neves, André | - |
dc.date.accessioned | 2018-07-20T15:06:16Z | - |
dc.date.available | 2018-07-20T15:06:16Z | - |
dc.date.issued | 2017-08 | en_US |
dc.identifier.citation | Marques, Fernando C, Neves, Andre. (2017). Existence of infinitely many minimal hypersurfaces in positive Ricci curvature. INVENTIONES MATHEMATICAE, 209 (577 - 616. doi:10.1007/s00222-017-0716-6 | en_US |
dc.identifier.issn | 0020-9910 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr18q1v | - |
dc.description.abstract | In the early 1980s, S. T. Yau conjectured that any compact Riemannian three-manifold admits an infinite number of closed immersed minimal surfaces. We use min-max theory for the area functional to prove this conjecture in the positive Ricci curvature setting. More precisely, we show that every compact Riemannian manifold with positive Ricci curvature and dimension at most seven contains infinitely many smooth, closed, embedded minimal hypersurfaces. In the last section we mention some open problems related with the geometry of these minimal hypersurfaces. | en_US |
dc.format.extent | 577 - 616 | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | INVENTIONES MATHEMATICAE | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Existence of infinitely many minimal hypersurfaces in positive Ricci curvature | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1007/s00222-017-0716-6 | - |
dc.date.eissued | 2017-01-25 | en_US |
dc.identifier.eissn | 1432-1297 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
LJLL140404MarquesFC-0.3Mo.pdf | 324.73 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.