Skip to main content

Uniformization of spherical CR manifolds

Author(s): Cheng, Jih-Hsin; Chiu, Hung-Lin; Yang, Paul C.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr18m4z
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheng, Jih-Hsin-
dc.contributor.authorChiu, Hung-Lin-
dc.contributor.authorYang, Paul C.-
dc.date.accessioned2019-04-05T21:49:16Z-
dc.date.available2019-04-05T21:49:16Z-
dc.date.issued2014-04-01en_US
dc.identifier.citationCheng, Jih-Hsin, Chiu, Hung-Lin, Yang, Paul. (2014). Uniformization of spherical CR manifolds. ADVANCES IN MATHEMATICS, 255 (182 - 216). doi:10.1016/j.aim.2014.01.002en_US
dc.identifier.issn0001-8708-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr18m4z-
dc.description.abstractLet M be a closed (compact with no boundary) spherical CR manifold of dimension 2n+1. Let (M) over tilde be the universal covering of M. Let Phi denote a CR developing map Phi : (M) over tilde -> S2n+1 where S2n+1 is the standard unit sphere in complex n+1-space Cn+1. Suppose that the CR Yamabe invariant of M is positive. Then we show that Phi is injective for n greater than or similar to 3. In the case n = 2, we also show that 41. is injective under the condition: s(M) < 1 where s(M) means the minimum exponent of the integrability of the Green’s function for the CR invariant sublaplacian on <(M)over tilde>. It then follows that M is uniformizable. (C) 2014 Elsevier Inc. All rights reserved.en_US
dc.format.extent182 - 216en_US
dc.languageEnglishen_US
dc.language.isoen_USen_US
dc.relation.ispartofADVANCES IN MATHEMATICSen_US
dc.rightsAuthor's manuscripten_US
dc.titleUniformization of spherical CR manifoldsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.aim.2014.01.002-
dc.date.eissued2014-01-23en_US
dc.identifier.eissn1090-2082-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1301.1133.pdf324.85 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.