Uniformization of spherical CR manifolds
Author(s): Cheng, Jih-Hsin; Chiu, Hung-Lin; Yang, Paul C.
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr18m4z
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cheng, Jih-Hsin | - |
dc.contributor.author | Chiu, Hung-Lin | - |
dc.contributor.author | Yang, Paul C. | - |
dc.date.accessioned | 2019-04-05T21:49:16Z | - |
dc.date.available | 2019-04-05T21:49:16Z | - |
dc.date.issued | 2014-04-01 | en_US |
dc.identifier.citation | Cheng, Jih-Hsin, Chiu, Hung-Lin, Yang, Paul. (2014). Uniformization of spherical CR manifolds. ADVANCES IN MATHEMATICS, 255 (182 - 216). doi:10.1016/j.aim.2014.01.002 | en_US |
dc.identifier.issn | 0001-8708 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr18m4z | - |
dc.description.abstract | Let M be a closed (compact with no boundary) spherical CR manifold of dimension 2n+1. Let (M) over tilde be the universal covering of M. Let Phi denote a CR developing map Phi : (M) over tilde -> S2n+1 where S2n+1 is the standard unit sphere in complex n+1-space Cn+1. Suppose that the CR Yamabe invariant of M is positive. Then we show that Phi is injective for n greater than or similar to 3. In the case n = 2, we also show that 41. is injective under the condition: s(M) < 1 where s(M) means the minimum exponent of the integrability of the Green’s function for the CR invariant sublaplacian on <(M)over tilde>. It then follows that M is uniformizable. (C) 2014 Elsevier Inc. All rights reserved. | en_US |
dc.format.extent | 182 - 216 | en_US |
dc.language | English | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | ADVANCES IN MATHEMATICS | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Uniformization of spherical CR manifolds | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1016/j.aim.2014.01.002 | - |
dc.date.eissued | 2014-01-23 | en_US |
dc.identifier.eissn | 1090-2082 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1301.1133.pdf | 324.85 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.