Non-supersymmetric Wilson loop in $$ \mathcal{N} $$ = 4 SYM and defect 1d CFT
Author(s): Beccaria, Matteo; Giombi, Simone; Tseytlin, Arkady A
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr18c9r447
Abstract: | <jats:title>A<jats:sc>bstract</jats:sc> </jats:title> <jats:p>Following Polchinski and Sully (<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://arxiv.org/abs/1104.5077" ext-link-type="uri">arXiv:1104.5077</jats:ext-link>), we consider a generalized Wilson loop operator containing a constant parameter <jats:italic>ζ</jats:italic> in front of the scalar coupling term, so that <jats:italic>ζ</jats:italic> = 0 corresponds to the standard Wilson loop, while <jats:italic>ζ</jats:italic> = 1 to the locally supersymmetric one. We compute the expectation value of this operator for circular loop as a function of <jats:italic>ζ</jats:italic> to second order in the planar weak coupling expansion in <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$ \mathcal{N} $$</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>N</mml:mi> </mml:math> </jats:alternatives> </jats:inline-formula> = 4 SYM theory. We then explain the relation of the expansion near the two conformal points <jats:italic>ζ</jats:italic> = 0 and <jats:italic>ζ</jats:italic> = 1 to the correlators of scalar operators inserted on the loop. We also discuss the AdS<jats:sub>5</jats:sub> × <jats:italic>S</jats:italic> <jats:sup>5</jats:sup> string 1-loop correction to the strong-coupling expansion of the standard circular Wilson loop, as well as its generalization to the case of mixed boundary conditions on the five-sphere coordinates, corresponding to general <jats:italic>ζ</jats:italic>. From the point of view of the defect CFT<jats:sub>1</jats:sub> defined on the Wilson line, the <jats:italic>ζ</jats:italic>-dependent term can be seen as a perturbation driving a RG flow from the standard Wilson loop in the UV to the supersymmetric Wilson loop in the IR. Both at weak and strong coupling we find that the logarithm of the expectation value of the standard Wilson loop for the circular contour is larger than that of the supersymmetric one, which appears to be in agreement with the 1d analog of the F-theorem.</jats:p> |
Publication Date: | 21-Mar-2018 |
Electronic Publication Date: | 21-Mar-2018 |
Citation: | Beccaria, Matteo, Giombi, Simone, Tseytlin, Arkady A. (2018). Non-supersymmetric Wilson loop in $$ \mathcal{N} $$ = 4 SYM and defect 1d CFT. Journal of High Energy Physics, 2018 (3), 10.1007/jhep03(2018)131 |
DOI: | doi:10.1007/jhep03(2018)131 |
EISSN: | 1029-8479 |
Keywords: | AdS-CFT Correspondence, Wilson, ’t Hooft and Polyakov loops, Supersym- metric Gauge Theory |
Language: | en |
Type of Material: | Journal Article |
Journal/Proceeding Title: | Journal of High Energy Physics |
Version: | Final published version. This is an open access article. |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.