Skip to main content

CHARIS science: Performance simulations for the Subaru Telescope's third-generation of exoplanet imaging instrumentation.

Author(s): Brandt, TD; McElwain, MW; Janson, M; Knapp, GR; Mede, K; et al

To refer to this page use:
Abstract: We describe the expected scientific capabilities of CHARIS, a high-contrast integral-field spectrograph (IFS) currently under construction for the Subaru telescope. CHARIS is part of a new generation of instruments, enabled by extreme adaptive optics (AO) systems (including SCExAO at Subaru), that promise greatly improved contrasts at small angular separation thanks to their ability to use spectral information to distinguish planets from quasistatic speckles in the stellar point-spread function (PSF). CHARIS is similar in concept to GPI and SPHERE, on Gemini South and the Very Large Telescope, respectively, but will be unique in its ability to simultaneously cover the entire near-infrared J, H, and K bands with a low-resolution mode. This extraordinarily broad wavelength coverage will enable spectral differential imaging down to angular separations of a few λ/D, corresponding to ~0".1. SCExAO will also offer contrast approaching 10-5 at similar separations, ~0".1–0".2. The discovery yield of a CHARIS survey will depend on the exoplanet distribution function at around 10 AU. If the distribution of planets discovered by radial velocity surveys extends unchanged to ~20 AU, observations of ~200 mostly young, nearby stars targeted by existing high-contrast instruments might find ~1–3 planets. Carefully optimizing the target sample could improve this yield by a factor of a few, while an upturn in frequency at a few AU could also increase the number of detections. CHARIS, with a higher spectral resolution mode of R ~ 75, will also be among the best instruments to characterize planets and brown dwarfs like HR 8799 cde and κ and b.
Publication Date: 5-Sep-2014
Citation: Brandt, TD, McElwain, MW, Janson, M, Knapp, GR, Mede, K, Limbach, MA, Groff, T, Burrows, A, Gunn, JE, Guyon, O, Hashimoto, J, Hayashi, M, Jovanovic, N, Kasdin, NJ, Kuzuhara, M, Lupton, RH, Martinache, F, Sorahana, S, Spiegel, DS, Takato, N, Tamura, M, Turner, EL, Vanderbei, RJ, Wisniewski, JP. "CHARIS science: Performance simulations for the Subaru Telescope's third-generation of exoplanet imaging instrumentation." Proceedings of SPIE 9148, Adaptive Optics Systems IV, Montreal, Quebec, Canada, 22 Jun 2014, 914849-1 - 914849-13, doi:10.1117/12.2057256
DOI: doi:10.1117/12.2057256
ISSN: 0277-786X
Pages: 914849-1 - 914849-13
Type of Material: Conference Article
Series/Report no.: Proceedings of SPIE;914849
Journal/Proceeding Title: Adaptive Optics Systems IV, Montreal, Quebec, Canada, 22 Jun 2014
Version: This is the publisher’s version of the article (version of record). All rights reserved to the publisher. Please refer to the publisher's site for terms of use.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.