Skip to main content

Tree-chromatic number

Author(s): Seymour, Paul D.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1895z
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSeymour, Paul D.-
dc.date.accessioned2018-07-20T15:09:06Z-
dc.date.available2018-07-20T15:09:06Z-
dc.date.issued2016-01en_US
dc.identifier.citationSeymour, Paul. (2016). Tree-chromatic number. JOURNAL OF COMBINATORIAL THEORY SERIES B, 116 (229 - 237. doi:10.1016/j.jctb.2015.08.002en_US
dc.identifier.issn0095-8956-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1895z-
dc.description.abstractLet us say a graph G has “tree-chromatic number” at most k if it admits a tree-decomposition (T, (X-t : t is an element of V (T))) such that G[X-t] has chromatic number at most k for each t is an element of V (T). This seems to be a new concept, and this paper is a collection of observations on the topic. In particular we show that there are graphs with tree-chromatic number two and with arbitrarily large chromatic number; and for all l >= 4, every graph with no triangle and with no induced cycle of length more than E has tree-chromatic number at most l - 2. (C) 2015 Elsevier Inc. All rights reserved.en_US
dc.format.extent229 - 237en_US
dc.language.isoen_USen_US
dc.relation.ispartofJOURNAL OF COMBINATORIAL THEORY SERIES Ben_US
dc.rightsAuthor's manuscripten_US
dc.titleTree-chromatic numberen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.jctb.2015.08.002-
dc.date.eissued2015-08-21en_US
dc.identifier.eissn1096-0902-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
tree-chromatic_number.pdf107.17 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.