Immersion in four-edge-connected graphs
Author(s): Chudnovsky, Maria; Dvořák, Zdeněk; Klimošová, Tereza; Seymour, Paul D.
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1832f
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chudnovsky, Maria | - |
dc.contributor.author | Dvořák, Zdeněk | - |
dc.contributor.author | Klimošová, Tereza | - |
dc.contributor.author | Seymour, Paul D. | - |
dc.date.accessioned | 2017-04-04T20:18:30Z | - |
dc.date.available | 2017-04-04T20:18:30Z | - |
dc.date.issued | 2016-01 | en_US |
dc.identifier.citation | [10] M. Chudnovsky, Z. Dvorak, T. Klimosova, P. Seymour, Immersion in four-edge-connected graphs, J. Combin. Theory Ser. B 116 (2016) 208–218. | en_US |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1832f | - |
dc.description.abstract | Fix g>1. Every graph of large enough tree-width contains a g x g grid as a minor; but here we prove that every four-edge-connected graph of large enough tree-width contains a g x g grid as an immersion (and hence contains any fixed graph with maximum degree at most four as an immersion). This result has a number of applications. | en_US |
dc.format.extent | 208-218 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Journal of combinatorial theory. Series B. | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Immersion in four-edge-connected graphs | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | 10.1016/j.jctb.2015.07.006 | - |
dc.date.eissued | 2015-08-11 | en_US |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1308.0827v1.pdf | 118.2 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.