Skip to main content

Immersion in four-edge-connected graphs

Author(s): Chudnovsky, Maria; Dvořák, Zdeněk; Klimošová, Tereza; Seymour, Paul D.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1832f
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChudnovsky, Maria-
dc.contributor.authorDvořák, Zdeněk-
dc.contributor.authorKlimošová, Tereza-
dc.contributor.authorSeymour, Paul D.-
dc.date.accessioned2017-04-04T20:18:30Z-
dc.date.available2017-04-04T20:18:30Z-
dc.date.issued2016-01en_US
dc.identifier.citation[10] M. Chudnovsky, Z. Dvorak, T. Klimosova, P. Seymour, Immersion in four-edge-connected graphs, J. Combin. Theory Ser. B 116 (2016) 208–218.en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1832f-
dc.description.abstractFix g>1. Every graph of large enough tree-width contains a g x g grid as a minor; but here we prove that every four-edge-connected graph of large enough tree-width contains a g x g grid as an immersion (and hence contains any fixed graph with maximum degree at most four as an immersion). This result has a number of applications.en_US
dc.format.extent208-218en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of combinatorial theory. Series B.en_US
dc.rightsAuthor's manuscripten_US
dc.titleImmersion in four-edge-connected graphsen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1016/j.jctb.2015.07.006-
dc.date.eissued2015-08-11en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1308.0827v1.pdf118.2 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.