Skip to main content

BSDEs with terminal conditions that have bounded Malliavin derivative

Author(s): Cheridito, Patrick; Nam, Kihun

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr17z9g
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheridito, Patrick-
dc.contributor.authorNam, Kihun-
dc.date.accessioned2021-10-11T14:17:16Z-
dc.date.available2021-10-11T14:17:16Z-
dc.date.issued2014-02en_US
dc.identifier.citationCheridito, Patrick, and Kihun Nam. "BSDEs with terminal conditions that have bounded Malliavin derivative." Journal of Functional Analysis 266, no. 3 (2014): 1257-1285. doi:10.1016/j.jfa.2013.12.004en_US
dc.identifier.issn0022-1236-
dc.identifier.urihttps://arxiv.org/abs/1211.1089-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr17z9g-
dc.description.abstractWe show existence and uniqueness of solutions to BSDEs of the form Yt=ξ+∫Ttf(s,Ys,Zs)ds−∫TtZsdWs in the case where the terminal condition ξ has bounded Malliavin derivative. The driver f(s, y, z) is assumed to be Lipschitz continuous in y but only locally Lipschitz continuous in z. In particular, it can grow arbitrarily fast in z. If in addition to having bounded Malliavin derivative, ξ is bounded, the driver needs only be locally Lipschitz continuous in y. In the special case where the BSDE is Markovian, we obtain existence and uniqueness results for semilinear parabolic PDEs with non-Lipschitz nonlinearities. We discuss the case where there is no lateral boundary as well as lateral boundary conditions of Dirichlet and Neumann type.en_US
dc.format.extent1257 - 1285en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of Functional Analysisen_US
dc.rightsAuthor's manuscripten_US
dc.titleBSDEs with terminal conditions that have bounded Malliavin derivativeen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.jfa.2013.12.004-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
BSDEsMalliavinDerivative.pdf307.79 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.