Skip to main content

Spin-singlet quantum Hall states and Jack polynomials with a prescribed symmetry

Author(s): Estienne, Benoit; Bernevig, Bogdan A

To refer to this page use:
Abstract: We show that a large class of bosonic spin-singlet Fractional Quantum Hall model wavefunctions and their quasihole excitations can be written in terms of Jack polynomials with a prescribed symmetry. Our approach describes new spin-singlet quantum Hall states at tilling fraction v = 2k/2r-1 and generalizes the (k, r) spin-polarized Jack polynomial states. The NASS and Halperin spin-singlet states emerge as specific cases of our construction. The polynomials express many-body states which contain configurations obtained from a root partition through a generalized squeezing procedure involving spin and orbital degrees of freedom. The corresponding generalized Pauli principle for root partitions is obtained. allowing for counting of the quasihole states. We also extract the central charge and quasihole scaling dimension, and propose a conjecture for the underlying CFT of the (k, r) spin-singlet Jack states. Published by Elsevier B.V.
Publication Date: 11-Apr-2012
Electronic Publication Date: 14-Dec-2011
Citation: Estienne, Benoit, Bernevig, B Andrei. (2012). Spin-singlet quantum Hall states and Jack polynomials with a prescribed symmetry. NUCLEAR PHYSICS B, 857 (185 - 206. doi:10.1016/j.nuclphysb.2011.12.007
DOI: doi:10.1016/j.nuclphysb.2011.12.007
ISSN: 0550-3213
Pages: 185 - 206
Type of Material: Journal Article
Journal/Proceeding Title: NUCLEAR PHYSICS B
Version: Author's manuscript

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.