Dirac metal to topological metal transition at a structural phase change in Au2Pb and prediction of Z(2) topology for the superconductor
Author(s): Schoop, Leslie M; Xie, Lilia S; Chen, Ru; Gibson, Quinn D; Lapidus, Saul H; et al
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr17h69
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Schoop, Leslie M | - |
dc.contributor.author | Xie, Lilia S | - |
dc.contributor.author | Chen, Ru | - |
dc.contributor.author | Gibson, Quinn D | - |
dc.contributor.author | Lapidus, Saul H | - |
dc.contributor.author | Kimchi, Itamar | - |
dc.contributor.author | Hirschberger, Max | - |
dc.contributor.author | Haldolaarachchige, Neel | - |
dc.contributor.author | Ali, Mazhar N | - |
dc.contributor.author | Belvin, Carina A | - |
dc.contributor.author | Liang, Tian | - |
dc.contributor.author | Neaton, Jeffrey B | - |
dc.contributor.author | Ong, Nai Phuan | - |
dc.contributor.author | Vishwanath, Ashvin | - |
dc.contributor.author | Cava, Robert J | - |
dc.date.accessioned | 2018-07-20T15:10:20Z | - |
dc.date.available | 2018-07-20T15:10:20Z | - |
dc.date.issued | 2015-06-01 | en_US |
dc.identifier.citation | Schoop, Leslie M, Xie, Lilia S, Chen, Ru, Gibson, Quinn D, Lapidus, Saul H, Kimchi, Itamar, Hirschberger, Max, Haldolaarachchige, Neel, Ali, Mazhar N, Belvin, Carina A, Liang, Tian, Neaton, Jeffrey B, Ong, NP, Vishwanath, Ashvin, Cava, RJ. (2015). Dirac metal to topological metal transition at a structural phase change in Au2Pb and prediction of Z(2) topology for the superconductor. PHYSICAL REVIEW B, 91 (10.1103/PhysRevB.91.214517 | en_US |
dc.identifier.issn | 1098-0121 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr17h69 | - |
dc.description.abstract | Three-dimensional Dirac semimetals (DSMs) are materials that have masslessDirac electrons and exhibit exotic physical properties. It has been suggested that structurally distorting a DSM can create a topological insulator but this has not yet been experimentally verified. Furthermore, Majorana fermions have been theoretically proposed to exist inmaterials that exhibit both superconductivity and topological surface states. Herewe showthat the cubic Laves phase Au2Pb has a bulk Dirac cone that is predicted to gap on cooling through a structural phase transition at 100 K. The low temperature phase can be assigned a Z(2) = -1 topological index, and this phase becomes superconducting below 1.2 K. These characteristics make Au2Pb a unique platform for studying the transition between bulk Dirac electrons and topological surface states as well as studying the interaction of superconductivity with topological surface states, combining many different properties of emergent materials-superconductivity, bulk Dirac electrons, and a topologically nontrivial Z(2) invariant. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | PHYSICAL REVIEW B | en_US |
dc.rights | Final published version. This is an open access article. | en_US |
dc.title | Dirac metal to topological metal transition at a structural phase change in Au2Pb and prediction of Z(2) topology for the superconductor | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1103/PhysRevB.91.214517 | - |
dc.date.eissued | 2015-06-23 | en_US |
dc.identifier.eissn | 1550-235X | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
PhysRevB.91.214517.pdf | 1.49 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.