Skip to main content

Sparse principal component analysis for high dimensional multivariate time series

Author(s): Wang, Z; Han, F; Liu, H

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr17g43
Abstract: We study sparse principal component analysis (sparse PCA) for high dimensional multivariate vector autoregressive (VAR) time series. By treating the transition matrix as a nuisance parameter, we show that sparse PCA can be directly applied on analyzing multivariate time series as if the data are i.i.d. generated. Under a double asymptotic framework in which both the length of the sample period T and dimensionality d of the time series can increase (with possibly d≫T), we provide explicit rates of convergence of the angle between the estimated and population leading eigenvectors of the time series covariance matrix. Our results suggest that the spectral norm of the transition matrix plays a pivotal role in determining the final rates of convergence. Implications of such a general result is further illustrated using concrete examples. The results of this paper have impacts on different applications, including financial time series, biomedical imaging, and social media, etc.
Publication Date: 2013
Citation: Wang, Zhaoran, Fang Han, and Han Liu. "Sparse Principal Component Analysis for High Dimensional Multivariate Time Series." In Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics, PMLR 31: pp. 48-56. 2013.
ISSN: 1532-4435
EISSN: 1533-7928
Pages: 48 - 56
Type of Material: Conference Article
Journal/Proceeding Title: Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics, PMLR
Version: Final published version. Article is made available in OAR by the publisher's permission or policy.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.