Skip to main content

Mechanical Stress Regulates Epithelial Tissue Integrity and Stiffness through the FGFR/Erk2 Signaling Pathway during Embryogenesis

Author(s): Kinoshita, Noriyuki; Hashimoto, Yutaka; Yasue, Naoko; Suzuki, Makoto; Cristea, Ileana M; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr17940t3b
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKinoshita, Noriyuki-
dc.contributor.authorHashimoto, Yutaka-
dc.contributor.authorYasue, Naoko-
dc.contributor.authorSuzuki, Makoto-
dc.contributor.authorCristea, Ileana M-
dc.contributor.authorUeno, Naoto-
dc.date.accessioned2022-01-25T14:51:29Z-
dc.date.available2022-01-25T14:51:29Z-
dc.date.issued2020-03-17en_US
dc.identifier.citationKinoshita, Noriyuki, Hashimoto, Yutaka, Yasue, Naoko, Suzuki, Makoto, Cristea, Ileana M, Ueno, Naoto. (2020). Mechanical Stress Regulates Epithelial Tissue Integrity and Stiffness through the FGFR/Erk2 Signaling Pathway during Embryogenesis.. Cell reports, 30 (11), 3875 - 3888.e3. doi:10.1016/j.celrep.2020.02.074en_US
dc.identifier.issn2211-1247-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr17940t3b-
dc.description.abstractPhysical forces generated by tissue-tissue interactions are a critical component of embryogenesis, aiding the formation of organs in a coordinated manner. In this study, using Xenopus laevis embryos and phosphoproteome analyses, we uncover the rapid activation of the mitogen-activated protein (MAP) kinase Erk2 upon stimulation with centrifugal, compression, or stretching force. We demonstrate that Erk2 induces the remodeling of cytoskeletal proteins, including F-actin, an embryonic cadherin C-cadherin, and the tight junction protein ZO-1. We show these force-dependent changes to be prerequisites for the enhancement of cellular junctions and tissue stiffening during early embryogenesis. Furthermore, Erk2 activation is FGFR1 dependent while not requiring fibroblast growth factor (FGF) ligands, suggesting that cell/tissue deformation triggers receptor activation in the absence of ligands. These findings establish previously unrecognized functions for mechanical forces in embryogenesis and reveal its underlying force-induced signaling pathways.en_US
dc.format.extent3875 - 3888.e3en_US
dc.languageengen_US
dc.language.isoen_USen_US
dc.relation.ispartofCell Reportsen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleMechanical Stress Regulates Epithelial Tissue Integrity and Stiffness through the FGFR/Erk2 Signaling Pathway during Embryogenesisen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.celrep.2020.02.074-
dc.identifier.eissn2211-1247-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Mechanical_stress_regulates_epithelial_signaling_pathway_embryogenesis.pdf6.91 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.