Skip to main content

Compactness of conformally compact Einstein manifolds in dimension 4

Author(s): Chang, Sun-Yung A.; Ge, Yuxin

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1774f
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Sun-Yung A.-
dc.contributor.authorGe, Yuxin-
dc.date.accessioned2019-10-09T15:15:05Z-
dc.date.available2019-10-09T15:15:05Z-
dc.date.issued2018-12-15en_US
dc.identifier.citationChang, Sun-Yung A, Ge, Yuxin. (2018). Compactness of conformally compact Einstein manifolds in dimension 4. ADVANCES IN MATHEMATICS, 340 (588 - 652. doi:10.1016/j.aim.2018.10.010en_US
dc.identifier.issn0001-8708-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1774f-
dc.description.abstractIn this paper, we establish some compactness results of conformally compact Einstein metrics on 4-dimensional manifolds. Our results were proved under assumptions on the behavior of some local and non-local conformal invariants, on the compactness of the boundary metrics at the conformal infinity, and on the topology of the manifolds. (C) 2018 Elsevier Inc. All rights reserved.en_US
dc.format.extent588 - 652en_US
dc.language.isoen_USen_US
dc.relation.ispartofADVANCES IN MATHEMATICSen_US
dc.rightsAuthor's manuscripten_US
dc.titleCompactness of conformally compact Einstein manifolds in dimension 4en_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.aim.2018.10.010-
dc.date.eissued2018-10-17en_US
dc.identifier.eissn1090-2082-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
cge180930.pdf496.54 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.