Skip to main content

REVERBERATION MAPPING OF THE BROAD LINE REGION: APPLICATION TO A HYDRODYNAMICAL LINE-DRIVEN DISK WIND SOLUTION

Author(s): Waters, Tim; Kashi, Amit; Proga, Daniel; Eracleous, Michael; Barth, Aaron J; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr16x6h
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWaters, Tim-
dc.contributor.authorKashi, Amit-
dc.contributor.authorProga, Daniel-
dc.contributor.authorEracleous, Michael-
dc.contributor.authorBarth, Aaron J-
dc.contributor.authorGreene, Jenny E.-
dc.date.accessioned2019-10-09T19:32:52Z-
dc.date.available2019-10-09T19:32:52Z-
dc.date.issued2016-08-10en_US
dc.identifier.citationWaters, Tim, Kashi, Amit, Proga, Daniel, Eracleous, Michael, Barth, Aaron J, Greene, Jenny. (2016). REVERBERATION MAPPING OF THE BROAD LINE REGION: APPLICATION TO A HYDRODYNAMICAL LINE-DRIVEN DISK WIND SOLUTION. ASTROPHYSICAL JOURNAL, 827 (10.3847/0004-637X/827/1/53en_US
dc.identifier.issn0004-637X-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr16x6h-
dc.description.abstractThe latest analysis efforts in reverberation mapping are beginning to allow reconstruction of echo images (or velocity-delay maps) that encode information about the structure and kinematics of the broad line region (BLR) in active galactic nuclei (AGNs). Such maps can constrain sophisticated physical models for the BLR. The physical picture of the BLR is often theorized to be a photoionized wind launched from the AGN accretion disk. Previously we showed that the line-driven disk wind solution found in an earlier simulation by Proga and Kallman is virialized over a large distance from the disk. This finding implies that, according to this model, black hole masses can be reliably estimated through reverberation mapping techniques. However, predictions of echo images expected from line-driven disk winds are not available. Here, after presenting the necessary radiative transfer methodology, we carry out the first calculations of such predictions. We find that the echo images are quite similar to other virialized BLR models such as randomly orbiting clouds and thin Keplerian disks. We conduct a parameter survey exploring how echo images, line profiles, and transfer functions depend on both the inclination angle and the line opacity. We find that the line profiles are almost always single peaked, while transfer functions tend to have tails extending to large time delays. The outflow, despite being primarily equatorially directed, causes an appreciable blueshifted excess on both the echo image and line profile when seen from lower inclinations (i less than or similar to 45 degrees). This effect may be observable in low ionization lines such as H beta.en_US
dc.language.isoen_USen_US
dc.relationhttps://ui.adsabs.harvard.edu/abs/2016ApJ...827...53W/abstracten_US
dc.relation.ispartofASTROPHYSICAL JOURNALen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleREVERBERATION MAPPING OF THE BROAD LINE REGION: APPLICATION TO A HYDRODYNAMICAL LINE-DRIVEN DISK WIND SOLUTIONen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.3847/0004-637X/827/1/53-
dc.date.eissued2016-08-05en_US
dc.identifier.eissn1538-4357-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Waters_2016_ApJ_827_53.pdf5.38 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.