The multi-armed bandit problem with covariates
Author(s): Perchet, Vianney; Rigollet, Philippe
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr16w0n
Abstract: | We consider a multi-armed bandit problem in a setting where each arm produces a noisy reward realization which depends on an observable random covariate. As opposed to the traditional static multi-armed bandit problem, this setting allows for dynamically changing rewards that better describe applications where side information is available. We adopt a nonparametric model where the expected rewards are smooth functions of the covariate and where the hardness of the problem is captured by a margin parameter. To maximize the expected cumulative reward, we introduce a policy called Adaptively Binned Successive Elimination (ABSE) that adaptively decomposes the global problem into suitably “localized” static bandit problems. This policy constructs an adaptive partition using a variant of the Successive Elimination (SE) policy. Our results include sharper regret bounds for the SE policy in a static bandit problem and minimax optimal regret bounds for the ABSE policy in the dynamic problem. |
Publication Date: | Apr-2013 |
Citation: | Perchet, Vianney, and Philippe Rigollet. "The multi-armed bandit problem with covariates." The Annals of Statistics 41, no. 2 (2013): 693-721. doi:10.1214/13-AOS1101 |
DOI: | doi:10.1214/13-AOS1101 |
ISSN: | 0090-5364 |
Pages: | 693 - 721 |
Type of Material: | Journal Article |
Journal/Proceeding Title: | The Annals of Statistics |
Version: | Final published version. Article is made available in OAR by the publisher's permission or policy. |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.