Skip to main content

Amplification and attenuation of increased primary production in a marine food web

Author(s): Kearney, Kelly A; Stock, Charles; Sarmiento, Jorge L

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr16688j37
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKearney, Kelly A-
dc.contributor.authorStock, Charles-
dc.contributor.authorSarmiento, Jorge L-
dc.date.accessioned2022-01-25T14:59:00Z-
dc.date.available2022-01-25T14:59:00Z-
dc.date.issued2013-10-02en_US
dc.identifier.citationKearney, Kelly A., Charles Stock, and Jorge L. Sarmiento. "Amplification and attenuation of increased primary production in a marine food web." Marine Ecology Progress Series 491 (2013): 1-14. doi:10.3354/meps10484.en_US
dc.identifier.issn0171-8630-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr16688j37-
dc.description.abstractWe used an end-to-end ecosystem model that incorporates physics, biogeochemistry, and predator-prey dynamics for the Eastern Subarctic Pacific ecosystem to investigate the factors controlling propagation of changes in primary production to higher trophic levels. We found that lower trophic levels respond to increased primary production in unexpected ways due to complex predatory interactions, with small phytoplankton increasing more than large phytoplankton due to relief from predation by microzooplankton, which are kept in check by the more abundant mesozooplankton. We also found that the propagation of production to upper trophic levels depends critically on how non-predatory mortality is structured in the model, with much greater propagation occurring with linear mortality and much less with quadratic mortality, both of which functional forms are in common use in ecosystem models. We used an ensemble simulation approach to examine how uncertainties in model parameters affect these results. When considering the full range of potential responses to enhanced productivity, the effect of uncertainties related to the functional form of non-predatory mortality was often masked by uncertainties in the food-web parameterization. The predicted responses of several commercially important species, however, were significantly altered by non-predatory mortality assumptions.en_US
dc.format.extent1 - 14en_US
dc.language.isoen_USen_US
dc.relation.ispartofMarine Ecology Progress Seriesen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleAmplification and attenuation of increased primary production in a marine food weben_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.3354/meps10484-
dc.identifier.eissn1616-1599-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Amplification_attenuation_increased_primary_production_marine_food_web.pdf1.66 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.