Skip to main content

On-Chip Quantum-Dot Light Source for Quantum-Device Readout

Author(s): Liu, Y-Y; Stehlik, J; Mi, X; Hartke, TR; Gullans, MJ; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr16387
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Y-Y-
dc.contributor.authorStehlik, J-
dc.contributor.authorMi, X-
dc.contributor.authorHartke, TR-
dc.contributor.authorGullans, MJ-
dc.contributor.authorPetta, Jason R-
dc.date.accessioned2018-07-20T15:11:09Z-
dc.date.available2018-07-20T15:11:09Z-
dc.date.issued2018-01en_US
dc.identifier.citationLiu, Y-Y, Stehlik, J, Mi, X, Hartke, TR, Gullans, MJ, Petta, JR. (2018). On-Chip Quantum-Dot Light Source for Quantum-Device Readout. PHYSICAL REVIEW APPLIED, 9 (10.1103/PhysRevApplied.9.014030en_US
dc.identifier.issn2331-7019-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr16387-
dc.description.abstractWe use microwave radiation generated by a semiconductor double-quantum-dot (DQD) micromaser for charge-state detection. A cavity is populated with n(c) similar to 6000 photons by driving a current through an emitter DQD. These photons are used to sense the charge state of a target DQD that is located at the opposite end of the cavity. The charge dynamics in the target DQD influences the output power and emission frequency of the maser. Three different readout mechanisms are compared. The detection scheme requires no cavity input field and may potentially be used to improve the scalability of semiconductor and superconducting qubit readout technologies.en_US
dc.language.isoenen_US
dc.relation.ispartofPHYSICAL REVIEW APPLIEDen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleOn-Chip Quantum-Dot Light Source for Quantum-Device Readouten_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1103/PhysRevApplied.9.014030-
dc.date.eissued2018-01-29en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
PhysRevApplied.9.014030.pdf618.46 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.