Skip to main content

The role of boundaries in the magnetorotational instability

Author(s): Gissinger, Christophe; Goodman, Jeremy J.; Ji, Hantao

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr15q8q
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGissinger, Christophe-
dc.contributor.authorGoodman, Jeremy J.-
dc.contributor.authorJi, Hantao-
dc.date.accessioned2019-08-05T18:24:27Z-
dc.date.available2019-08-05T18:24:27Z-
dc.date.issued2012-07en_US
dc.identifier.citationGissinger, Christophe, Goodman, Jeremy, Ji, Hantao. (2012). The role of boundaries in the magnetorotational instability. PHYSICS OF FLUIDS, 24 (10.1063/1.4737657en_US
dc.identifier.issn1070-6631-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr15q8q-
dc.description.abstractIn this paper, we investigate numerically the flow of an electrically conducting fluid in a cylindrical Taylor-Couette flow when an axial magnetic field is applied. To minimize Ekman recirculation due to vertical no-slip boundaries, two independently rotating rings are used at the vertical endcaps. This configuration reproduces setup used in laboratory experiments aiming to observe the magnetorotational instability (MRI). Our 3D global simulations show that the nature of the bifurcation, the non-linear saturation, and the structure of axisymmetric MRI modes are significantly affected by the presence of boundaries. In addition, large scale non-axisymmetric modes are obtained when the applied field is sufficiently strong. We show that these modes are related to Kelvin-Helmholtz destabilization of a free Shercliff shear layer created by the combined action of the applied field and the rotating rings at the endcaps. Finally, we compare our numerical simulations to recent experimental results obtained in the Princeton MRI experiment. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737657]en_US
dc.language.isoen_USen_US
dc.relation.ispartofPHYSICS OF FLUIDSen_US
dc.rightsAuthor's manuscripten_US
dc.titleThe role of boundaries in the magnetorotational instabilityen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1063/1.4737657-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1201.1853v1.pdf2.75 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.