Optimal detection of sparse principal components in high dimension
Author(s): Berthet, Quentin; Rigollet, Philippe
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr15n49
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Berthet, Quentin | - |
dc.contributor.author | Rigollet, Philippe | - |
dc.date.accessioned | 2020-03-03T00:09:39Z | - |
dc.date.available | 2020-03-03T00:09:39Z | - |
dc.date.issued | 2013-08 | en_US |
dc.identifier.citation | Berthet, Quentin, Rigollet, Philippe. (2013). Optimal detection of sparse principal components in high dimension. The Annals of Statistics, 41 (4), 1780 - 1815. doi:10.1214/13-AOS1127 | en_US |
dc.identifier.issn | 0090-5364 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr15n49 | - |
dc.description.abstract | We perform a finite sample analysis of the detection levels for sparse principal components of a high-dimensional covariance matrix. Our minimax optimal test is based on a sparse eigenvalue statistic. Alas, computing this test is known to be NP-complete in general, and we describe a computationally efficient alternative test using convex relaxations. Our relaxation is also proved to detect sparse principal components at near optimal detection levels, and it performs well on simulated datasets. Moreover, using polynomial time reductions from theoretical computer science, we bring significant evidence that our results cannot be improved, thus revealing an inherent trade off between statistical and computational performance. | en_US |
dc.format.extent | 1780 - 1815 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | The Annals of Statistics | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Optimal detection of sparse principal components in high dimension | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1214/13-AOS1127 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
OptimalDetectionSparsePrincipalHighDim.pdf | 439.25 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.