Skip to main content

Optimal detection of sparse principal components in high dimension

Author(s): Berthet, Quentin; Rigollet, Philippe

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr15n49
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBerthet, Quentin-
dc.contributor.authorRigollet, Philippe-
dc.date.accessioned2020-03-03T00:09:39Z-
dc.date.available2020-03-03T00:09:39Z-
dc.date.issued2013-08en_US
dc.identifier.citationBerthet, Quentin, Rigollet, Philippe. (2013). Optimal detection of sparse principal components in high dimension. The Annals of Statistics, 41 (4), 1780 - 1815. doi:10.1214/13-AOS1127en_US
dc.identifier.issn0090-5364-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr15n49-
dc.description.abstractWe perform a finite sample analysis of the detection levels for sparse principal components of a high-dimensional covariance matrix. Our minimax optimal test is based on a sparse eigenvalue statistic. Alas, computing this test is known to be NP-complete in general, and we describe a computationally efficient alternative test using convex relaxations. Our relaxation is also proved to detect sparse principal components at near optimal detection levels, and it performs well on simulated datasets. Moreover, using polynomial time reductions from theoretical computer science, we bring significant evidence that our results cannot be improved, thus revealing an inherent trade off between statistical and computational performance.en_US
dc.format.extent1780 - 1815en_US
dc.language.isoen_USen_US
dc.relation.ispartofThe Annals of Statisticsen_US
dc.rightsAuthor's manuscripten_US
dc.titleOptimal detection of sparse principal components in high dimensionen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1214/13-AOS1127-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
OptimalDetectionSparsePrincipalHighDim.pdf439.25 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.