Skip to main content

The 3–4-Week MJO Prediction Skill in a GFDL Coupled Model

Author(s): Xiang, Baoqiang; Zhao, Ming; Jiang, Xianan; Lin, Shian-Jiann; Li, Tim; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr15m62654
Full metadata record
DC FieldValueLanguage
dc.contributor.authorXiang, Baoqiang-
dc.contributor.authorZhao, Ming-
dc.contributor.authorJiang, Xianan-
dc.contributor.authorLin, Shian-Jiann-
dc.contributor.authorLi, Tim-
dc.contributor.authorFu, Xiouhua-
dc.contributor.authorVecchi, Gabriel-
dc.date.accessioned2022-01-25T15:00:07Z-
dc.date.available2022-01-25T15:00:07Z-
dc.date.issued2015-07-01en_US
dc.identifier.citationXiang, Baoqiang, Ming Zhao, Xianan Jiang, Shian-Jiann Lin, Tim Li, Xiouhua Fu, and Gabriel Vecchi. "The 3–4-week MJO prediction skill in a GFDL coupled model." Journal of Climate 28, no. 13 (2015): 5351-5364. doi:10.1175/JCLI-D-15-0102.1.en_US
dc.identifier.issn0894-8755-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr15m62654-
dc.description.abstractBased on a new version of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, the Madden–Julian oscillation (MJO) prediction skill in boreal wintertime (November–April) is evaluated by analyzing 11 years (2003–13) of hindcast experiments. The initial conditions are obtained by applying a simple nudging technique toward observations. Using the real-time multivariate MJO (RMM) index as a predictand, it is demonstrated that the MJO prediction skill can reach out to 27 days before the anomaly correlation coefficient (ACC) decreases to 0.5. The MJO forecast skill also shows relatively larger contrasts between target strong and weak cases (32 versus 7 days) than between initially strong and weak cases (29 versus 24 days). Meanwhile, a strong dependence on target phases is found, as opposed to relative skill independence from different initial phases. The MJO prediction skill is also shown to be about 29 days during the Dynamics of the MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011 (DYNAMO/CINDY) field campaign period. This model’s potential predictability, the upper bound of prediction skill, extends out to 42 days, revealing a considerable unutilized predictability and a great potential for improving current MJO prediction.en_US
dc.format.extent5351 - 5364en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of Climateen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleThe 3–4-Week MJO Prediction Skill in a GFDL Coupled Modelen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1175/JCLI-D-15-0102.1-
dc.identifier.eissn1520-0442-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
The_3-4-week_MJO_prediction_skill_GFDL_coupled_model.pdf6.95 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.