Knots in lattice homology
Author(s): Ozsvath, Peter Steven; Stipsicz, Andras I.; Szabo, Zoltan
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr15h3c
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ozsvath, Peter Steven | - |
dc.contributor.author | Stipsicz, Andras I. | - |
dc.contributor.author | Szabo, Zoltan | - |
dc.date.accessioned | 2018-07-20T15:09:03Z | - |
dc.date.available | 2018-07-20T15:09:03Z | - |
dc.date.issued | 2014 | en_US |
dc.identifier.citation | Ozsvath, Peter, Stipsicz, Andras I, Szabo, Zoltan. (2014). Knots in lattice homology. COMMENTARII MATHEMATICI HELVETICI, 89 (783 - 818. doi:10.4171/CMH/334 | en_US |
dc.identifier.issn | 0010-2571 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr15h3c | - |
dc.description.abstract | Assume that Gamma(v0) is a tree with vertex set Vert(Gamma(v0)) = v(0), v(1),..., v(n), and with an integral framing (weight) attached to each vertex except v(0). Assume furthermore that the intersection matrix of G = Gamma(v0) - v(0) is negative definite. We define a filtration on the chain complex computing the lattice homology of G and show how to use this information in computing lattice homology groups of a negative definite graph we get by attaching some framing to v(0). As a simple application we produce new families of graphs which have arbitrarily many bad vertices for which the lattice homology groups are isomorphic to the corresponding Heegaard Floer homology groups. | en_US |
dc.format.extent | 783 - 818 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | COMMENTARII MATHEMATICI HELVETICI | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Knots in lattice homology | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.4171/CMH/334 | - |
dc.date.eissued | 2014-11-25 | en_US |
dc.identifier.eissn | 1420-8946 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1208.2617v1.pdf | 527.57 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.