Uniformly attracting limit sets for the critically dissipative SQG equation
Author(s): Constantin, Peter; Zelati, Michele Coti; Vicol, Vlad C.
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr15h1j
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Constantin, Peter | - |
dc.contributor.author | Zelati, Michele Coti | - |
dc.contributor.author | Vicol, Vlad C. | - |
dc.date.accessioned | 2017-11-21T19:18:22Z | - |
dc.date.available | 2017-11-21T19:18:22Z | - |
dc.date.issued | 2016-02 | en_US |
dc.identifier.citation | Constantin, Peter, Zelati, Michele Coti, Vicol, Vlad. (2016). Uniformly attracting limit sets for the critically dissipative SQG equation. NONLINEARITY, 29 (298 - 318. doi:10.1088/0951-7715/29/2/298 | en_US |
dc.identifier.issn | 0951-7715 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr15h1j | - |
dc.description.abstract | We consider the global attractor of the critical surface quasi-geostrophic (SQG) semigroup S ( t ) on the scale-invariant space () T H 12 . It was shown in [ 15 ] that this attractor is finite dimensional, and that it attracts uniformly bounded sets in () δ + T H 12 for any δ > 0 , leaving open the question of uniform attraction in () T H 12 . In this paper we prove the uniform attraction in () T H 12 , by combining ideas from the De Giorgi iteration and nonlinear maximum principles. | en_US |
dc.format.extent | 298 - 318 | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | NONLINEARITY | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Uniformly attracting limit sets for the critically dissipative SQG equation | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1088/0951-7715/29/2/298 | - |
dc.date.eissued | 2016-01-13 | en_US |
dc.identifier.eissn | 1361-6544 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1506.06375v1.pdf | 200.41 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.