Skip to main content

Uniformly attracting limit sets for the critically dissipative SQG equation

Author(s): Constantin, Peter; Zelati, Michele Coti; Vicol, Vlad C.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr15h1j
Full metadata record
DC FieldValueLanguage
dc.contributor.authorConstantin, Peter-
dc.contributor.authorZelati, Michele Coti-
dc.contributor.authorVicol, Vlad C.-
dc.date.accessioned2017-11-21T19:18:22Z-
dc.date.available2017-11-21T19:18:22Z-
dc.date.issued2016-02en_US
dc.identifier.citationConstantin, Peter, Zelati, Michele Coti, Vicol, Vlad. (2016). Uniformly attracting limit sets for the critically dissipative SQG equation. NONLINEARITY, 29 (298 - 318. doi:10.1088/0951-7715/29/2/298en_US
dc.identifier.issn0951-7715-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr15h1j-
dc.description.abstractWe consider the global attractor of the critical surface quasi-geostrophic (SQG) semigroup S ( t ) on the scale-invariant space () T H 12 . It was shown in [ 15 ] that this attractor is finite dimensional, and that it attracts uniformly bounded sets in () δ + T H 12 for any δ > 0 , leaving open the question of uniform attraction in () T H 12 . In this paper we prove the uniform attraction in () T H 12 , by combining ideas from the De Giorgi iteration and nonlinear maximum principles.en_US
dc.format.extent298 - 318en_US
dc.language.isoenen_US
dc.relation.ispartofNONLINEARITYen_US
dc.rightsAuthor's manuscripten_US
dc.titleUniformly attracting limit sets for the critically dissipative SQG equationen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1088/0951-7715/29/2/298-
dc.date.eissued2016-01-13en_US
dc.identifier.eissn1361-6544-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1506.06375v1.pdf200.41 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.