Skip to main content

Mean field games and systemic risk

Author(s): Carmona, Rene; Fouque, JP; Sun, LH

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr15c63
Abstract: © 2015 International Press. We propose a simple model of inter-bank borrowing and lending where the evolution of the log-monetary reserves of N banks is described by a system of diffusion processes coupled through their drifts in such a way that stability of the system depends on the rate of inter-bank borrowing and lending. Systemic risk is characterized by a large number of banks reaching a default threshold by a given time horizon. Our model incorporates a game feature where each bank controls its rate of borrowing/lending to a central bank. The optimization reflects the desire of each bank to borrow from the central bank when its monetary reserve falls below a critical level or lend if it rises above this critical level which is chosen here as the average monetary reserve. Borrowing from or lending to the central bank is also subject to a quadratic cost at a rate which can be fixed by the regulator. We solve explicitly for Nash equilibria with finitely many players, and we show that in this model the central bank acts as a clearing house, adding liquidity to the system without affecting its systemic risk. We also study the corresponding Mean Field Game in the limit of a large number of banks in the presence of a common noise.
Publication Date: 1-Jan-2015
Citation: Carmona, R, Fouque, JP, Sun, LH. (2015). Mean field games and systemic risk. Communications in Mathematical Sciences, 13 (4), 911 - 933. doi:10.4310/CMS.2015.v13.n4.a4
DOI: doi:10.4310/CMS.2015.v13.n4.a4
ISSN: 1539-6746
EISSN: 1945-0796
Pages: 911 - 933
Type of Material: Journal Article
Journal/Proceeding Title: Communications in Mathematical Sciences
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.