Skip to main content

Accelerating Stochastic Composition Optimization

Author(s): Wang, Mengdi; Liu, Ji; Fang, Ethan X.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr14r3p
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Mengdi-
dc.contributor.authorLiu, Ji-
dc.contributor.authorFang, Ethan X.-
dc.date.accessioned2020-03-02T17:17:39Z-
dc.date.available2020-03-02T17:17:39Z-
dc.date.issued2016-01-01en_US
dc.identifier.citationWang, Mengdi, Ji Liu, and Ethan X. Fang. "Accelerating stochastic composition optimization." Advances in Neural Information Processing Systems (2016): 1722-1730. https://arxiv.org/abs/1607.07329v1en_US
dc.identifier.issn1049-5258-
dc.identifier.urihttps://arxiv.org/abs/1607.07329v1-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr14r3p-
dc.description.abstractConsider the stochastic composition optimization problem where the objective is a composition of two expected-value functions. We propose a new stochastic firstorder method, namely the accelerated stochastic compositional proximal gradient (ASC-PG) method, which updates based on queries to the sampling oracle using two different timescales. The ASC-PG is the first proximal gradient method for the stochastic composition problem that can deal with nonsmooth regularization penalty. We show that the ASC-PG exhibits faster convergence than the best known algorithms, and that it achieves the optimal sample-error complexity in several important special cases. We further demonstrate the application of ASC-PG to reinforcement learning and conduct numerical experiments.en_US
dc.format.extent1722 - 1730en_US
dc.language.isoen_USen_US
dc.relation.ispartofAdvances in Neural Information Processing Systemsen_US
dc.rightsAuthor's manuscripten_US
dc.titleAccelerating Stochastic Composition Optimizationen_US
dc.typeConference Articleen_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
OAConf_AcceleratingStochasticCompositionOptimization.pdf256.87 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.