Skip to main content

A CHEEGER INEQUALITY FOR THE GRAPH CONNECTION LAPLACIAN

Author(s): Bandeira, Afonso S; Singer, Amit; Spielman, Daniel A

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr14q7z
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBandeira, Afonso S-
dc.contributor.authorSinger, Amit-
dc.contributor.authorSpielman, Daniel A-
dc.date.accessioned2019-08-29T17:01:19Z-
dc.date.available2019-08-29T17:01:19Z-
dc.date.issued2013en_US
dc.identifier.citationBandeira, Afonso S, Singer, Amit, Spielman, Daniel A. (2013). A CHEEGER INEQUALITY FOR THE GRAPH CONNECTION LAPLACIAN. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 34 (1611 - 1630. doi:10.1137/120875338en_US
dc.identifier.issn0895-4798-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr14q7z-
dc.description.abstractThe O(d) synchronization problem consists of estimating a set of n unknown orthogonal d x d matrices O-1,..., O-n from noisy measurements of a subset of the pairwise ratios OiOj-1. We formulate and prove a Cheeger-type inequality that relates a measure of how well it is possible to solve the O(d) synchronization problem with the spectra of an operator, the graph connection Laplacian. We also show how this inequality provides a worst-case performance guarantee for a spectral method to solve this problem.en_US
dc.format.extent1611 - 1630en_US
dc.language.isoen_USen_US
dc.relation.ispartofSIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONSen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleA CHEEGER INEQUALITY FOR THE GRAPH CONNECTION LAPLACIANen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1137/120875338-
dc.date.eissued2013-12-05en_US
dc.identifier.eissn1095-7162-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
120875338.pdf263.7 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.