Skip to main content

Excluding paths and antipaths

Author(s): Chudnovsky, Maria; Seymour, Paul D.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1495k
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChudnovsky, Maria-
dc.contributor.authorSeymour, Paul D.-
dc.date.accessioned2018-07-20T15:07:36Z-
dc.date.available2018-07-20T15:07:36Z-
dc.date.issued2015-08en_US
dc.identifier.citationChudnovsky, Maria, Seymour, Paul. (2015). Excluding paths and antipaths. COMBINATORICA, 35 (389 - 412. doi:10.1007/s00493-014-3000-zen_US
dc.identifier.issn0209-9683-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1495k-
dc.description.abstractThe ErdAs-Hajnal conjecture states that for every graph H, there exists a constant delta(H)> 0, such that if a graph G has no induced subgraph isomorphic to H, then G contains a clique or a stable set of size at least |V (G)| (delta(H)). This conjecture is still open. We consider a variant of the conjecture, where instead of excluding H as an induced subgraph, both H and H (c) are excluded. We prove this modified conjecture for the case when H is the five-edge path. Our second main result is an asymmetric version of this: we prove that for every graph G such that G contains no induced six-edge path, and G (c) contains no induced four-edge path, G contains a polynomial-size clique or stable set.en_US
dc.format.extent389 - 412en_US
dc.language.isoen_USen_US
dc.relation.ispartofCOMBINATORICAen_US
dc.rightsAuthor's manuscripten_US
dc.titleExcluding paths and antipathsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1007/s00493-014-3000-z-
dc.date.eissued2014-08-05en_US
dc.identifier.eissn1439-6912-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
P5CP5.pdf201.04 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.