Finite time singularities for the free boundary incompressible Euler equations
Author(s): Castro, Angel; Cordoba, Diego; Fefferman, Charles L.; Gancedo, Francisco; Gomez-Serrano, Javier
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr14767
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Castro, Angel | - |
dc.contributor.author | Cordoba, Diego | - |
dc.contributor.author | Fefferman, Charles L. | - |
dc.contributor.author | Gancedo, Francisco | - |
dc.contributor.author | Gomez-Serrano, Javier | - |
dc.date.accessioned | 2019-12-10T19:09:24Z | - |
dc.date.available | 2019-12-10T19:09:24Z | - |
dc.date.issued | 2013-11 | en_US |
dc.identifier.citation | Castro, Angel, Cordoba, Diego, Fefferman, Charles, Gancedo, Francisco, Gomez-Serrano, Javier. (2013). Finite time singularities for the free boundary incompressible Euler equations. ANNALS OF MATHEMATICS, 178 (1061 - 1134. doi:10.4007/annals.2013.178.3.6 | en_US |
dc.identifier.issn | 0003-486X | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr14767 | - |
dc.description.abstract | In this paper, we prove the existence of smooth initial data for the 2D free boundary incompressible Euler equations (also known for some particular scenarios as the water wave problem) for which the smoothness of the interface breaks down in finite time into a splash singularity or a splat singularity. | en_US |
dc.format.extent | 1061 - 1134 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | ANNALS OF MATHEMATICS | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Finite time singularities for the free boundary incompressible Euler equations | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.4007/annals.2013.178.3.6 | - |
dc.date.eissued | 2013-11-01 | en_US |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10.1.1.759.8737.pdf | 738.42 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.