Skip to main content

Nodal Domains of Maass Forms I

Author(s): Ghosh, Amit; Reznikov, Andre; Sarnak, Peter C

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr14693
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGhosh, Amit-
dc.contributor.authorReznikov, Andre-
dc.contributor.authorSarnak, Peter C-
dc.date.accessioned2018-07-20T15:11:17Z-
dc.date.available2018-07-20T15:11:17Z-
dc.date.issued2013-10en_US
dc.identifier.citationGhosh, Amit, Reznikov, Andre, Sarnak, Peter. (2013). Nodal Domains of Maass Forms I. GEOMETRIC AND FUNCTIONAL ANALYSIS, 23 (1515 - 1568. doi:10.1007/s00039-013-0237-4en_US
dc.identifier.issn1016-443X-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr14693-
dc.description.abstractThis paper deals with some questions that have received a lot of attention since they were raised by Hejhal and Rackner in their 1992 numerical computations of Maass forms. We establish sharp upper and lower bounds for the L (2)-restrictions of these forms to certain curves on the modular surface. These results, together with the Lindelof Hypothesis and known subconvex L (a)-bounds are applied to prove that locally the number of nodal domains of such a form goes to infinity with its eigenvalue.en_US
dc.format.extent1515 - 1568en_US
dc.language.isoen_USen_US
dc.relation.ispartofGEOMETRIC AND FUNCTIONAL ANALYSISen_US
dc.rightsAuthor's manuscripten_US
dc.titleNodal Domains of Maass Forms Ien_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1007/s00039-013-0237-4-
dc.date.eissued2013-07-09en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1207.6625.pdf1.05 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.