Skip to main content

CUTOFF FOR RANDOM TO RANDOM CARD SHUFFLE

Author(s): Bernstein, Megan; Nestoridi, Evita

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr13x83k7g
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBernstein, Megan-
dc.contributor.authorNestoridi, Evita-
dc.date.accessioned2023-12-28T14:46:00Z-
dc.date.available2023-12-28T14:46:00Z-
dc.date.issued2019-09en_US
dc.identifier.citationBernstein, Megan, Nestoridi, Evita. (2019). CUTOFF FOR RANDOM TO RANDOM CARD SHUFFLE. ANNALS OF PROBABILITY, 47 (3303 - 3320. doi:10.1214/19-AOP1340en_US
dc.identifier.issn0091-1798-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr13x83k7g-
dc.description.abstractIn this paper, we use the eigenvalues of the random to random card shuffle to prove a sharp upper bound for the total variation mixing time. Combined with the lower bound due to Subag, we prove that this walk exhibits cutoff at 3/4 n log n - 1/4 n log log n with window of order n, answering a conjecture of Diaconis.en_US
dc.format.extent3303 - 3320en_US
dc.languageEnglishen_US
dc.language.isoen_USen_US
dc.relation.ispartofANNALS OF PROBABILITYen_US
dc.rightsAuthor's manuscripten_US
dc.titleCUTOFF FOR RANDOM TO RANDOM CARD SHUFFLEen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1214/19-AOP1340-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1703.06210.pdf211.22 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.