To refer to this page use:
http://arks.princeton.edu/ark:/88435/pr13x83k7g
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bernstein, Megan | - |
dc.contributor.author | Nestoridi, Evita | - |
dc.date.accessioned | 2023-12-28T14:46:00Z | - |
dc.date.available | 2023-12-28T14:46:00Z | - |
dc.date.issued | 2019-09 | en_US |
dc.identifier.citation | Bernstein, Megan, Nestoridi, Evita. (2019). CUTOFF FOR RANDOM TO RANDOM CARD SHUFFLE. ANNALS OF PROBABILITY, 47 (3303 - 3320. doi:10.1214/19-AOP1340 | en_US |
dc.identifier.issn | 0091-1798 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr13x83k7g | - |
dc.description.abstract | In this paper, we use the eigenvalues of the random to random card shuffle to prove a sharp upper bound for the total variation mixing time. Combined with the lower bound due to Subag, we prove that this walk exhibits cutoff at 3/4 n log n - 1/4 n log log n with window of order n, answering a conjecture of Diaconis. | en_US |
dc.format.extent | 3303 - 3320 | en_US |
dc.language | English | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | ANNALS OF PROBABILITY | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | CUTOFF FOR RANDOM TO RANDOM CARD SHUFFLE | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1214/19-AOP1340 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1703.06210.pdf | 211.22 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.