Skip to main content

ON LIPSCHITZ EXTENSION FROM FINITE SUBSETS

Author(s): Naor, Assaf; Rabani, Yuval

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr13t18
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNaor, Assaf-
dc.contributor.authorRabani, Yuval-
dc.date.accessioned2018-07-20T15:10:21Z-
dc.date.available2018-07-20T15:10:21Z-
dc.date.issued2017-04en_US
dc.identifier.citationNaor, Assaf, Rabani, Yuval. (2017). ON LIPSCHITZ EXTENSION FROM FINITE SUBSETS. ISRAEL JOURNAL OF MATHEMATICS, 219 (115 - 161. doi:10.1007/s11856-017-1475-1en_US
dc.identifier.issn0021-2172-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr13t18-
dc.description.abstractWe prove that for every n is an element of N there exists a metric space (X, d(X)), an n-point subset S subset of X, a Banach space (Z, parallel to . parallel to(Z)) and a 1-Lipschitz function f : S -> Z such that the Lipschitz constant of every function F : X -> Z that extends f is at least a constant multiple of root log n. This improves a bound of Johnson and Lindenstrauss [JL84]. We also obtain the following quantitative counterpart to a classical extension theorem of Minty [Min70]. For every alpha is an element of(1/2, 1] and n is an element of N there exists a metric space (X, d(X)), an n-point subset S subset of X and a function f : S -> l(2) that is alpha-Holder with constant 1, yet the alpha-Holder constant of any F : X -> l(2) that extends f satisfies parallel to F parallel to(Lip(alpha)) greater than or similar to (log n) (2 alpha - 1/4 alpha) + (log n/log log n) (alpha 2 -) (1/2). We formulate a conjecture whose positive solution would strengthen Ball’s nonlinear Maurey extension theorem [Bal92], serving as a far-reaching nonlinear version of a theorem of K “ onig, Retherford and Tomczak-Jaegermann [KRTJ80]. We explain how this conjecture would imply as special cases answers to longstanding open questions of Johnson and Lindenstrauss [JL84] and Kalton [Kal04].en_US
dc.format.extent115 - 161en_US
dc.language.isoenen_US
dc.relation.ispartofISRAEL JOURNAL OF MATHEMATICSen_US
dc.rightsAuthor's manuscripten_US
dc.titleON LIPSCHITZ EXTENSION FROM FINITE SUBSETSen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1007/s11856-017-1475-1-
dc.date.eissued2017-04-28en_US
dc.identifier.eissn1565-8511-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1506.04398v1.pdf445.05 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.