Skip to main content

P-Rex1 is dispensable for Erk activation and mitogenesis in breast cancer

Author(s): Barrio-Real, Laura; Lopez-Haber, Cynthia; Casado-Medrano, Victoria; Goglia, Alexander G; Toettcher, Jared E; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr13p25
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBarrio-Real, Laura-
dc.contributor.authorLopez-Haber, Cynthia-
dc.contributor.authorCasado-Medrano, Victoria-
dc.contributor.authorGoglia, Alexander G-
dc.contributor.authorToettcher, Jared E-
dc.contributor.authorCaloca, Maria J-
dc.contributor.authorKazanietz, Marcelo G-
dc.date.accessioned2022-01-25T14:48:18Z-
dc.date.available2022-01-25T14:48:18Z-
dc.date.issued2018-06-19en_US
dc.identifier.citationBarrio-Real, L, Lopez-Haber, C, Casado-Medrano, V, Goglia, AG, Toettcher, JE, Caloca, MJ, Kazanietz, MG. (2018). P-Rex1 is dispensable for Erk activation and mitogenesis in breast cancer. Oncotarget, 9 (47), 28612 - 28624. doi:10.18632/oncotarget.25584en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr13p25-
dc.description.abstractPhosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (P-Rex1) is a key mediator of growth factor-induced activation of Rac1, a small GTPbinding protein widely implicated in actin cytoskeleton reorganization. This Guanine nucleotide Exchange Factor (GEF) is overexpressed in human luminal breast cancer, and its expression associates with disease progression, metastatic dissemination and poor outcome. Despite the established contribution of P-Rex1 to Rac activation and cell locomotion, whether this Rac-GEF has any relevant role in mitogenesis has been a subject of controversy. To tackle the discrepancies among various reports, we carried out an exhaustive analysis of the potential involvement of P-Rex1 on the activation of the mitogenic Erk pathway. Using a range of luminal breast cancer cellular models, we unequivocally showed that silencing P-Rex1 (transiently, stably, using multiple siRNA sequences) had no effect on the phospho-Erk response upon stimulation with growth factors (EGF, heregulin, IGF-I) or a GPCR ligand (SDF-1). The lack of involvement of P-Rex1 in Erk activation was confirmed at the single cell level using a fluorescent biosensor of Erk kinase activity. Depletion of P-Rex1 from breast cancer cells failed to affect cell cycle progression, cyclin D1 induction, Akt activation and apoptotic responses. In addition, mammary-specific P-Rex1 transgenic mice (MMTV-P-Rex1) did not show any obvious hyperproliferative phenotype. Therefore, despite its crucial role in Rac1 activation and cell motility, P-Rex1 is dispensable for mitogenic or survival responses in breast cancer cells.en_US
dc.format.extent28612 - 28624en_US
dc.language.isoen_USen_US
dc.relation.ispartofOncotargeten_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleP-Rex1 is dispensable for Erk activation and mitogenesis in breast canceren_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.18632/oncotarget.25584-
dc.identifier.eissn1949-2553-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
P_rex1_dispensable_Erk_breast_cancer.pdf3.05 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.