Skip to main content

Variants of Normality for Noetherian Schemes

Author(s): Kollar, Janos

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr13m10
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKollar, Janos-
dc.date.accessioned2017-11-21T19:44:54Z-
dc.date.available2017-11-21T19:44:54Z-
dc.date.issued2016en_US
dc.identifier.citationKollar, Janos. (2016). Variants of Normality for Noetherian Schemes. PURE AND APPLIED MATHEMATICS QUARTERLY, 12 (1 - 31en_US
dc.identifier.issn1558-8599-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr13m10-
dc.description.abstractThis note presents a uniform treatment of normality and three of its variants-topological, weak and seminormality-for Noetherian schemes. The key is to define these notions for pairs Z subset of X consisting of a (not necessarily reduced) scheme X and a closed, nowhere dense subscheme Z. An advantage of the new definitions is that, unlike the usual absolute ones, they are preserved by completions. This shortens some of the proofs and leads to more general results.en_US
dc.format.extent1 - 31en_US
dc.language.isoenen_US
dc.relation.ispartofPURE AND APPLIED MATHEMATICS QUARTERLYen_US
dc.rightsAuthor's manuscripten_US
dc.titleVariants of Normality for Noetherian Schemesen_US
dc.typeJournal Articleen_US
dc.date.eissued2016en_US
dc.identifier.eissn1558-8602-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1506.08738v2.pdf285.32 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.