Skip to main content

Simulations of ion acceleration at non-relativistic shocks. II. Magnetic field amplification

Author(s): Caprioli, D; Spitkovsky, Anatoly

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr12v2c93j
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCaprioli, D-
dc.contributor.authorSpitkovsky, Anatoly-
dc.date.accessioned2022-01-25T15:03:28Z-
dc.date.available2022-01-25T15:03:28Z-
dc.date.issued2014-09-23en_US
dc.identifier.citationCaprioli, D, Spitkovsky, A. (2014). Simulations of ion acceleration at non-relativistic shocks. II. Magnetic field amplification. Astrophysical Journal, 794 (1), 10.1088/0004-637X/794/1/46en_US
dc.identifier.issn0004-637X-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr12v2c93j-
dc.description.abstractWe use large hybrid simulations to study ion acceleration and generation of magnetic turbulence due to the streaming of particles that are self-consistently accelerated at non-relativistic shocks. When acceleration is efficient, we find that the upstream magnetic field is significantly amplified. The total amplification factor is larger than 10 for shocks with Alfvénic Mach number M = 100, and scales with the square root of M. The spectral energy density of excited magnetic turbulence is determined by the energy distribution of accelerated particles, and for moderately strong shocks (M ≲ 30) agrees well with the prediction of resonant streaming instability, in the framework of quasilinear theory of diffusive shock acceleration. For M ≳ 30, instead, Bell’s non-resonant hybrid (NRH) instability is predicted and found to grow faster than resonant instability. NRH modes are excited far upstream by escaping particles, and initially grow without disrupting the current, their typical wavelengths being much shorter than the current ions’ gyroradii. Then, in the nonlinear stage, most unstable modes migrate to larger and larger wavelengths, eventually becoming resonant in wavelength with the driving ions, which start diffuse. Ahead of strong shocks we distinguish two regions, separated by the free-escape boundary: the far upstream, where field amplification is provided by the current of escaping ions via NRH instability, and the shock precursor, where energetic particles are effectively magnetized, and field amplification is provided by the current in diffusing ions. The presented scalings of magnetic field amplification enable the inclusion of self-consistent microphysics into phenomenological models of ion acceleration at non-relativistic shocks.en_US
dc.language.isoen_USen_US
dc.relationhttps://ui.adsabs.harvard.edu/abs/2014ApJ...794...46C/abstracten_US
dc.relation.ispartofAstrophysical Journalen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleSimulations of ion acceleration at non-relativistic shocks. II. Magnetic field amplificationen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1088/0004-637X/794/1/46-
dc.date.eissued2014-10-10en_US
dc.identifier.eissn1538-4357-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Caprioli_2014_ApJ_794_46.pdf4.12 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.