Skip to main content

The molecular origins of chiral growth in walled cells

Author(s): Huang, Kerwyn Casey; Ehrhardt, David W; Shaevitz, Joshua W

To refer to this page use:
Abstract: Cells from all kingdoms of life adopt a dizzying array of fascinating shapes that support cellular function. Amoeboid and spherical shapes represent perhaps the simplest of geometries that may minimize the level of growth control required for survival. Slightly more complex are rod-shaped cells, from microscopic bacteria to macroscopic plants, which require additional mechanisms to define a cell’s longitudinal axis, width, and length. Recent evidence suggests that many rod- shaped, walled cells achieve elongated growth through chiral insertion of cell-wall material that may be coupled to a twisting of the cell body. Inspired by these observations, biophysical mechanisms for twisting growth have been proposed that link the mechanics of intracellular proteins to cell shape maintenance. In this review, we highlight experimental and theoretical work that connects molecular-scale organization and structure with the cellular-scale phenomena of rod- shaped growth.
Publication Date: Dec-2012
Citation: Huang, Kerwyn Casey, Ehrhardt, David W, Shaevitz, Joshua W. (2012). The molecular origins of chiral growth in walled cells. Current Opinion in Microbiology, 15 (6), 707 - 714. doi:10.1016/j.mib.2012.11.002
DOI: doi:10.1016/j.mib.2012.11.002
ISSN: 1369-5274
Pages: 707 - 714
Type of Material: Journal Article
Journal/Proceeding Title: Current Opinion in Microbiology
Version: Author's manuscript

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.