Skip to main content

Non-Convex Phase Retrieval From STFT Measurements

Author(s): Bendory, Tamir; Eldar, Yonina C; Boumal, Nicolas

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr12q78
Abstract: The problem of recovering a one-dimensional signal from its Fourier transform magnitude, called Fourier phase retrieval, is ill-posed in most cases. We consider the closely-related problem of recovering a signal from its phaseless short-time Fourier transform (STFT) measurements. This problem arises naturally in several applications, such as ultra-short laser pulse characterization and ptychography. The redundancy offered by the STFT enables unique recovery under mild conditions. We show that in some cases the unique solution can be obtained by the principal eigenvector of a matrix, constructed as the solution of a simple least-squares problem. When these conditions are not met, we suggest using the principal eigenvector of this matrix to initialize non-convex local optimization algorithms and propose two such methods. The first is based on minimizing the empirical risk loss function, while the second maximizes a quadratic function on the manifold of phases. We prove that under appropriate conditions, the proposed initialization is close to the underlying signal. We then analyze the geometry of the empirical risk loss function and show numerically that both gradient algorithms converge to the underlying signal even with small redundancy in the measurements. In addition, the algorithms are robust to noise.
Publication Date: Jan-2018
Electronic Publication Date: 29-Aug-2017
Citation: Bendory, Tamir, Eldar, Yonina C, Boumal, Nicolas. (2018). Non-Convex Phase Retrieval From STFT Measurements. IEEE TRANSACTIONS ON INFORMATION THEORY, 64 (467 - 484. doi:10.1109/TIT.2017.2745623
DOI: doi:10.1109/TIT.2017.2745623
ISSN: 0018-9448
EISSN: 1557-9654
Pages: 467 - 484
Type of Material: Journal Article
Journal/Proceeding Title: IEEE TRANSACTIONS ON INFORMATION THEORY
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.