Skip to main content

Amplification of the Ocean Carbon Sink During El Niños: Role of Poleward Ekman Transport and Influence on Atmospheric CO2

Author(s): Liao, Enhui; Resplandy, Laure; Liu, Junjie; Bowman, Kevin W

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr12j68410
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiao, Enhui-
dc.contributor.authorResplandy, Laure-
dc.contributor.authorLiu, Junjie-
dc.contributor.authorBowman, Kevin W-
dc.date.accessioned2022-01-25T14:58:45Z-
dc.date.available2022-01-25T14:58:45Z-
dc.date.issued2020-06-24en_US
dc.identifier.citationLiao, Enhui, Laure Resplandy, Junjie Liu, and Kevin W. Bowman. "Amplification of the ocean carbon sink during El Niños: role of poleward Ekman transport and influence on atmospheric CO2." Global Biogeochemical Cycles 34, no. 9 (2020): e2020GB006574. doi: 10.1029/2020GB006574.en_US
dc.identifier.issn0886-6236-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr12j68410-
dc.description.abstractAmplification of the ocean carbon sink during El Niño events partially offset terrestrial biosphere carbon losses to the atmosphere, but uncertainties in the magnitude, timing, and spatial extent of the ocean response confound our understanding of the global carbon budget and its sensitivity to climate. Here, we examine the mechanisms controlling the anomalous tropical Pacific Ocean CO2 drawdown during El Niño events harnessing multidecadal ocean pCO2 observations in conjunction with a state‐of‐the‐art ocean biogeochemical model. We show that poleward Ekman transport dramatically amplifies the near‐equatorial pCO2 anomaly identified in prior work and that this amplification varies considerably between El Niño events. During central Pacific events, the CO2 flux anomaly can vary up to fourfold between events (2002/2003 vs. 2015/2016), but it always recedes during the boreal winter to spring transition and the poleward transport of the anomaly mostly extends into the Northern Hemisphere. During eastern Pacific events characterized by an equatorially centered intertropical convergence zone (e.g., 1997/1998), the intense CO2 flux anomaly persists into boreal summer and can extend further into the Southern Hemisphere. The hemispheric asymmetry (northward vs. southward extension) and the termination (boreal winter/spring for central Pacific events vs. boreal summer for eastern Pacific events) of the ocean CO2 response are tied to the El Niño dynamics in the near‐equatorial region and also how it is amplified by poleward Ekman transport. Finally, we evaluate how differences in the ocean response influence atmospheric CO2 and discuss the potential of atmospheric CO2 satellite data to provide observational constraints.en_US
dc.language.isoen_USen_US
dc.relation.ispartofGlobal Biogeochemical Cyclesen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleAmplification of the Ocean Carbon Sink During El Niños: Role of Poleward Ekman Transport and Influence on Atmospheric CO2en_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1029/2020GB006574-
dc.identifier.eissn1944-9224-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Amplification_Ocean_Carbon_Sink_El_Niños_Poleward_Ekman_Transport_Atmospheric_CO2.pdf7.29 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.