Sharp Finiteness Principles For Lipschitz Selections
Author(s): Fefferman, Charles L.; Shvartsman, Pavel
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr12f40
Abstract: | Let (M,ρ) be a metric space and let Y be a Banach space. Given a positive integer m, let F be a set-valued mapping from M into the family of all compact convex subsets of Y of dimension at most m. In this paper we prove a finiteness principle for the existence of a Lipschitz selection of F with the sharp value of the finiteness constant. |
Publication Date: | Dec-2018 |
Electronic Publication Date: | 14-Sep-2018 |
Citation: | Fefferman, Charles, Shvartsman, Pavel. (2018). Sharp Finiteness Principles For Lipschitz Selections. GEOMETRIC AND FUNCTIONAL ANALYSIS, 28 (1641 - 1705. doi:10.1007/s00039-018-0467-6 |
DOI: | doi:10.1007/s00039-018-0467-6 |
ISSN: | 1016-443X |
EISSN: | 1420-8970 |
Pages: | 1641 - 1705 |
Type of Material: | Journal Article |
Journal/Proceeding Title: | GEOMETRIC AND FUNCTIONAL ANALYSIS |
Version: | Author's manuscript |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.