Skip to main content

Automated Prediction of Preferences Using Facial Expressions

Author(s): Masip, David; North, Michael S.; Todorov, Alexander; Osherson, Daniel N.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr12f3k
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMasip, David-
dc.contributor.authorNorth, Michael S.-
dc.contributor.authorTodorov, Alexander-
dc.contributor.authorOsherson, Daniel N.-
dc.date.accessioned2019-10-28T15:54:18Z-
dc.date.available2019-10-28T15:54:18Z-
dc.date.issued2014-02-04en_US
dc.identifier.citationMasip, David, North, Michael S, Todorov, Alexander, Osherson, Daniel N. (2014). Automated Prediction of Preferences Using Facial Expressions. PLoS ONE, 9 (2), e87434 - e87434. doi:10.1371/journal.pone.0087434en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr12f3k-
dc.description.abstractWe introduce a computer vision problem from social cognition, namely, the automated detection of attitudes from a person’s spontaneous facial expressions. To illustrate the challenges, we introduce two simple algorithms designed to predict observers’ preferences between images (e.g., of celebrities) based on covert videos of the observers’ faces. The two algorithms are almost as accurate as human judges performing the same task but nonetheless far from perfect. Our approach is to locate facial landmarks, then predict preference on the basis of their temporal dynamics. The database contains 768 videos involving four different kinds of preferences. We make it publicly available.en_US
dc.format.extente87434 - e87434en_US
dc.language.isoen_USen_US
dc.relation.ispartofPLoS ONEen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleAutomated Prediction of Preferences Using Facial Expressionsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1371/journal.pone.0087434-
dc.date.eissued2014-02-04en_US
dc.identifier.eissn1932-6203-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
journal.pone.0087434.PDF590.82 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.