Skip to main content

Q-Curvature on a Class of Manifolds with Dimension at Least 5

Author(s): Hang, Fengbo; Yang, Paul C.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1241b
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHang, Fengbo-
dc.contributor.authorYang, Paul C.-
dc.date.accessioned2019-04-05T20:16:07Z-
dc.date.available2019-04-05T20:16:07Z-
dc.date.issued2016-08en_US
dc.identifier.citationHang, Fengbo, Yang, Paul C. (2016). Q-Curvature on a Class of Manifolds with Dimension at Least 5. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 69 (1452 - 1491). doi:10.1002/cpa.21623en_US
dc.identifier.issn0010-3640-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1241b-
dc.description.abstractFor a smooth compact Riemannian manifold with positive Yamabe invariant, positive Q-curvature, and dimension at least 5, we prove the existence of a conformal metric with constant Q-curvature. Our approach is based on the study of an extremal problem for a new functional involving the Paneitz operator. (C) 2016 Wiley Periodicals, Inc.en_US
dc.format.extent1452 - 1491en_US
dc.language.isoen_USen_US
dc.relation.ispartofCOMMUNICATIONS ON PURE AND APPLIED MATHEMATICSen_US
dc.rightsAuthor's manuscripten_US
dc.titleQ-Curvature on a Class of Manifolds with Dimension at Least 5en_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1002/cpa.21623-
dc.date.eissued2015-11-03en_US
dc.identifier.eissn1097-0312-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1411.3926v4.pdf358.71 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.