Q-Curvature on a Class of Manifolds with Dimension at Least 5
Author(s): Hang, Fengbo; Yang, Paul C.
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1241b
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hang, Fengbo | - |
dc.contributor.author | Yang, Paul C. | - |
dc.date.accessioned | 2019-04-05T20:16:07Z | - |
dc.date.available | 2019-04-05T20:16:07Z | - |
dc.date.issued | 2016-08 | en_US |
dc.identifier.citation | Hang, Fengbo, Yang, Paul C. (2016). Q-Curvature on a Class of Manifolds with Dimension at Least 5. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 69 (1452 - 1491). doi:10.1002/cpa.21623 | en_US |
dc.identifier.issn | 0010-3640 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1241b | - |
dc.description.abstract | For a smooth compact Riemannian manifold with positive Yamabe invariant, positive Q-curvature, and dimension at least 5, we prove the existence of a conformal metric with constant Q-curvature. Our approach is based on the study of an extremal problem for a new functional involving the Paneitz operator. (C) 2016 Wiley Periodicals, Inc. | en_US |
dc.format.extent | 1452 - 1491 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Q-Curvature on a Class of Manifolds with Dimension at Least 5 | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1002/cpa.21623 | - |
dc.date.eissued | 2015-11-03 | en_US |
dc.identifier.eissn | 1097-0312 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1411.3926v4.pdf | 358.71 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.