Data compression in cosmology: A compressed likelihood for Planck data
Author(s): Prince, Heather; Dunkley, Jo
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr11z41t1w
Abstract: | We apply the massively optimized parameter estimation and data compression technique (MOPED) to the public Planck 2015 temperature likelihood, reducing the dimensions of the data space to one number per parameter of interest. We present CosMOPED, a lightweight and convenient compressed likelihood code implemented in PYTHON . In doing so we show that the l < 30 Planck temperature likelihood can be well approximated by two Gaussian-distributed data points, which allows us to replace the map-based low- l temperature likelihood by a simple Gaussian likelihood. We make available a PYTHON implementation of Planck’s 2015 Plik_lite temperature likelihood that includes these low-l binned temperature data (Planck- lite-py). We do not explicitly use the large-scale polarization data in CosMOPED, instead imposing a prior on the optical depth to reionization derived from these data. We show that the ΛCDM parameters recovered with CosMOPED are consistent with the uncompressed likelihood to within 0.1σ, and test that a 7-parameter extended model performs similarly well. |
Publication Date: | 1-Oct-2019 |
Electronic Publication Date: | 1-Oct-2019 |
Citation: | Prince, Heather, Dunkley, Jo. (Data compression in cosmology: A compressed likelihood for <i>Planck</i> data. Physical Review D, 100 (8), 10.1103/physrevd.100.083502 |
DOI: | doi:10.1103/physrevd.100.083502 |
ISSN: | 2470-0010 |
EISSN: | 2470-0029 |
Language: | en |
Type of Material: | Journal Article |
Journal/Proceeding Title: | Physical Review D |
Version: | Author's manuscript |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.