Skip to main content

Dispersive readout of valley splittings in cavity-coupled silicon quantum dots

Author(s): Burkard, Guido; Petta, Jason R

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr11w9n
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBurkard, Guido-
dc.contributor.authorPetta, Jason R-
dc.date.accessioned2018-07-20T15:08:48Z-
dc.date.available2018-07-20T15:08:48Z-
dc.date.issued2016-11-15en_US
dc.identifier.citationBurkard, Guido, Petta, JR. (2016). Dispersive readout of valley splittings in cavity-coupled silicon quantum dots. PHYSICAL REVIEW B, 94 (10.1103/PhysRevB.94.195305en_US
dc.identifier.issn2469-9950-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr11w9n-
dc.description.abstractThe band structure of bulk silicon has a sixfold valley degeneracy. Strain in the Si/SiGe quantum well system partially lifts the valley degeneracy, but the materials factors that set the splitting of the two lowest lying valleys are still under intense investigation. Using cavity input-output theory, we propose a method for accurately determining the valley splitting in Si/SiGe double quantum dots embedded in a superconducting microwave resonator. We show that low lying valley states in the double quantum dot energy level spectrum lead to readily observable features in the cavity transmission. These features generate a “fingerprint” of the microscopic energy level structure of a semiconductor double quantum dot, providing useful information on valley splittings and intervalley coupling rates.en_US
dc.language.isoenen_US
dc.relation.ispartofPHYSICAL REVIEW Ben_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleDispersive readout of valley splittings in cavity-coupled silicon quantum dotsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1103/PhysRevB.94.195305-
dc.date.eissued2016-11-14en_US
dc.identifier.eissn2469-9969-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
PhysRevB.94.195305.pdf1.46 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.