A New Rank Constraint on Multi-view Fundamental Matrices, and its Application to Camera Location Recovery
Author(s): Sengupta, Soumyadip; Amir, Tal; Galun, Meirav; Goldstein, Tom; Jacobs, David W; et al
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr11t6n
Abstract: | Accurate estimation of camera matrices is an important step in structure from motion algorithms. In this paper we introduce a novel rank constraint on collections of fundamental matrices in multi-view settings. We show that in general, with the selection of proper scale factors, a matrix formed by stacking fundamental matrices between pairs of images has rank 6. Moreover, this matrix forms the symmetric part of a rank 3 matrix whose factors relate directly to the corresponding camera matrices. We use this new characterization to produce better estimations of fundamental matrices by optimizing an L1-cost function using Iterative Re-weighted Least Squares and Alternate Direction Method of Multiplier. We further show that this procedure can improve the recovery of camera locations, particularly in multi-view settings in which fewer images are available. |
Publication Date: | 2017 |
Electronic Publication Date: | 9-Nov-2017 |
Citation: | Sengupta, Soumyadip, Amir, Tal, Galun, Meirav, Goldstein, Tom, Jacobs, David W, Singer, Amit, Basri, Ronen. (2017). A New Rank Constraint on Multi-view Fundamental Matrices, and its Application to Camera Location Recovery. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2413 - 2421. doi:10.1109/CVPR.2017.259 |
DOI: | doi:10.1109/CVPR.2017.259 |
ISSN: | 1063-6919 |
Pages: | 2413 - 2421 |
Type of Material: | Conference Article |
Journal/Proceeding Title: | 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017) |
Version: | Author's manuscript |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.