Skip to main content

Mass-radius Relations and Core-envelope Decompositions of Super-Earths and Sub-Neptunes

Author(s): Howe, Alex R; Burrows, Adam S.; Verne, Wesley

To refer to this page use:
Abstract: Many exoplanets have been discovered with radii of 1–4R⊕, between that of Earth and Neptune. A number of these are known to have densities consistent with solid compositions, while others are “sub-Neptunes” likely to have significant H2–He envelopes. Future surveys will no doubt significantly expand these populations. In order to understand how the measured masses and radii of such planets can inform their structures and compositions, we construct models both for solid layered planets and for planets with solid cores and gaseous envelopes, exploring a range of core masses, H2–He envelope masses, and associated envelope entropies. For planets in the super-Earth/sub-Neptune regime for which both radius and mass are measured, we estimate how each is partitioned into a solid core and gaseous envelope, associating a specific core mass and envelope mass with a given exoplanet. We perform this decomposition for both “Earth-like” rock-iron cores and pure ice cores, and find that the necessary gaseous envelope masses for this important sub-class of exoplanets must range very widely from zero to many Earth masses, even for a given core mass. This result bears importantly on exoplanet formation and envelope evaporation processes.
Publication Date: 1-Jun-2014
Electronic Publication Date: 15-May-2014
Citation: Howe, Alex R, Burrows, Adam, Verne, Wesley. (2014). Mass-radius Relations and Core-envelope Decompositions of Super-Earths and Sub-Neptunes. apj, 787 (173 - 173. doi:10.1088/0004-637X/787/2/173
DOI: doi:10.1088/0004-637X/787/2/173
Type of Material: Journal Article
Journal/Proceeding Title: Astrophysical Journal
Version: Final published version. This is an open access article.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.