Skip to main content

ON THE ABSENCE OF SPLASH SINGULARITIES IN THE CASE OF TWO-FLUID INTERFACES

Author(s): Fefferman, Charles L; Ionescu, Alexandru D; Lie, Victor

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr11s9h
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFefferman, Charles L-
dc.contributor.authorIonescu, Alexandru D-
dc.contributor.authorLie, Victor-
dc.date.accessioned2017-11-21T19:43:01Z-
dc.date.available2017-11-21T19:43:01Z-
dc.date.issued2016-02-15en_US
dc.identifier.citationFefferman, Charles, Ionescu, Alexandru D, Lie, Victor. (2016). ON THE ABSENCE OF SPLASH SINGULARITIES IN THE CASE OF TWO-FLUID INTERFACES. DUKE MATHEMATICAL JOURNAL, 165 (417 - 462. doi:10.1215/00127094-3166629en_US
dc.identifier.issn0012-7094-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr11s9h-
dc.description.abstractWe show that so-called splash singularities cannot develop in the case of locally smooth solutions of the two-fluid interfaces in two dimensions. More precisely, we show that the scenario of formation of singularities discovered by Castro, Cordoba, Fefferman, Gancedo, and Gomez-Serrano in the case of the water waves system, in which the interface remains locally smooth but self-intersects in finite time, is completely prevented in the case of two-fluid interfaces with positive densities.en_US
dc.format.extent417 - 462en_US
dc.language.isoenen_US
dc.relation.ispartofDUKE MATHEMATICAL JOURNALen_US
dc.rightsAuthor's manuscripten_US
dc.titleON THE ABSENCE OF SPLASH SINGULARITIES IN THE CASE OF TWO-FLUID INTERFACESen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1215/00127094-3166629-
dc.date.eissued2015-11-05en_US
dc.identifier.eissn1547-7398-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1312.2917v2.pdf603.96 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.