Thermal Equilibrium of a Macroscopic Quantum System in a Pure State
Author(s): Goldstein, Sheldon; Huse, David A; Lebowitz, Joel L; Tumulka, Roderich
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr11s5v
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Goldstein, Sheldon | - |
dc.contributor.author | Huse, David A | - |
dc.contributor.author | Lebowitz, Joel L | - |
dc.contributor.author | Tumulka, Roderich | - |
dc.date.accessioned | 2017-04-04T20:15:39Z | - |
dc.date.available | 2017-04-04T20:15:39Z | - |
dc.date.issued | 2015-09 | en_US |
dc.identifier.citation | Goldstein, Sheldon, Huse, David A, Lebowitz, Joel L, Tumulka, Roderich. (2015). Thermal Equilibrium of a Macroscopic Quantum System in a Pure State. Physical Review Letters, 115 (10), 10.1103/PhysRevLett.115.100402 | en_US |
dc.identifier.issn | 0031-9007 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr11s5v | - |
dc.description.abstract | We consider the notion of thermal equilibrium for an individual closed macroscopic quantum system in a pure state, i.e., described by a wave function. The macroscopic properties in thermal equilibrium of such a system, determined by its wave function, must be the same as those obtained from thermodynamics, e.g., spatial uniformity of temperature and chemical potential. When this is true we say that the system is in macroscopic thermal equilibrium (MATE). Such a system may, however, not be in microscopic thermal equilibrium (MITE). The latter requires that the reduced density matrices of small subsystems be close to those obtained from the microcanonical, equivalently the canonical, ensemble for the whole system. The distinction between MITE and MATE is particularly relevant for systems with many-body localization for which the energy eigenfuctions fail to be in MITE while necessarily most of them, but not all, are in MATE. We note, however, that for generic macroscopic systems, including those with MBL, most wave functions in an energy shell are in both MATE and MITE. For a classical macroscopic system, MATE holds for most phase points on the energy surface, but MITE fails to hold for any phase point | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Physical Review Letters | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Thermal Equilibrium of a Macroscopic Quantum System in a Pure State | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1103/PhysRevLett.115.100402 | - |
dc.date.eissued | 2015-09-04 | en_US |
dc.identifier.eissn | 1079-7114 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1506.07494v1.pdf | 205.09 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.