On the ubiquity of the Cauchy distribution in spectral problems
Author(s): Aizenman, Michael; Warzel, Simone
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr11m86
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aizenman, Michael | - |
dc.contributor.author | Warzel, Simone | - |
dc.date.accessioned | 2019-05-30T15:59:41Z | - |
dc.date.available | 2019-05-30T15:59:41Z | - |
dc.date.issued | 2015-10 | en_US |
dc.identifier.citation | Aizenman, Michael, Warzel, Simone. (2015). On the ubiquity of the Cauchy distribution in spectral problems. PROBABILITY THEORY AND RELATED FIELDS, 163 (61 - 87. doi:10.1007/s00440-014-0587-3 | en_US |
dc.identifier.issn | 0178-8051 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr11m86 | - |
dc.description.abstract | We consider the distribution of the values at real points of random functions which belong to the Herglotz-Pick (HP) class of analytic mappings of the upper half plane into itself. It is shown that under mild stationarity assumptions the individual values of HP functions with singular spectra have a Cauchy type distribution. The statement applies to the diagonal matrix elements of random operators, and holds regardless of the presence or not of level repulsion, i.e. applies to both random matrix and Poisson-type spectra. | en_US |
dc.format.extent | 61 - 87 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | PROBABILITY THEORY AND RELATED FIELDS | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | On the ubiquity of the Cauchy distribution in spectral problems | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1007/s00440-014-0587-3 | - |
dc.date.eissued | 2014-11-06 | en_US |
dc.identifier.eissn | 1432-2064 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1312.7769v2.pdf | 227.9 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.