Skip to main content

Fluctuating hydrodynamics for a discrete Gross-Pitaevskii equation: Mapping onto the Kardar-Parisi-Zhang universality class

Author(s): Kulkarni, Manas; Huse, David A; Spohn, Herbert

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr11k60
Abstract: We show that several aspects of the low-temperature hydrodynamics of a discrete Gross-Pitaevskii equation (GPE) can be understood by mapping it to a nonlinear version of fluctuating hydrodynamics. This is achieved by first writing the GPE in a hydrodynamic form of a continuity and a Euler equation. Respecting conservation laws, dissipation and noise due to the system's chaos are added, thus giving us a nonlinear stochastic field theory in general and the Kardar-Parisi-Zhang (KPZ) equation in our particular case. This mapping to KPZ is benchmarked against exact Hamiltonian numerics on discrete GPE by investigating the nonzero temperature dynamical structure factor and its scaling form and exponent. Given the ubiquity of the Gross-Pitaevskii equation (also known as the nonlinear Schrödinger equation), ranging from nonlinear optics to cold gases, we expect this remarkable mapping to the KPZ equation to be of paramount importance and far reaching consequences.
Publication Date: Oct-2015
Electronic Publication Date: 16-Oct-2015
Citation: Kulkarni, Manas, Huse, David A, Spohn, Herbert. (2015). Fluctuating hydrodynamics for a discrete Gross-Pitaevskii equation: Mapping onto the Kardar-Parisi-Zhang universality class. Physical Review A, 92 (4), 10.1103/PhysRevA.92.043612
DOI: doi:10.1103/PhysRevA.92.043612
ISSN: 1050-2947
EISSN: 1094-1622
Type of Material: Journal Article
Journal/Proceeding Title: Physical Review A
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.