Skip to main content

Multiscale adaptive smoothing models for the hemodynamic response function in fMRI

Author(s): Wang, Jiaping; Zhu, Hongtu; Fan, Jianqing; Giovanello, Kelly; Lin, Weili

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr11k3r
Abstract: In the event-related functional magnetic resonance imaging (fMRI) data analysis, there is an extensive interest in accurately and robustly estimating the hemodynamic response function (HRF) and its associated statistics (e.g., the magnitude and duration of the activation). Most methods to date are developed in the time domain and they have utilized almost exclusively the temporal information of fMRI data without accounting for the spatial information. The aim of this paper is to develop a multiscale adaptive smoothing model (MASM) in the frequency domain by integrating the spatial and frequency information to adaptively and accurately estimate HRFs pertaining to each stimulus sequence across all voxels in a three-dimensional (3D) volume. We use two sets of simulation studies and a real data set to examine the finite sample performance of MASM in estimating HRFs. Our real and simulated data analyses confirm that MASM outperforms several other state-of-the-art methods, such as the smooth finite impulse response (sFIR) model.
Publication Date: Jun-2013
Citation: Wang, Jiaping, Zhu, Hongtu, Fan, Jianqing, Giovanello, Kelly, Lin, Weili. (2013). Multiscale adaptive smoothing models for the hemodynamic response function in fMRI. The Annals of Applied Statistics, 7 (2), 904 - 935. doi:10.1214/12-AOAS609
DOI: doi:10.1214/12-AOAS609
ISSN: 1932-6157
Pages: 904 - 935
Type of Material: Journal Article
Journal/Proceeding Title: The Annals of Applied Statistics
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.