Skip to main content

Combinatorial Heegaard Floer homology and nice Heegaard diagrams

Author(s): Ozsvath, Peter Steven; Stipsicz, Andras I.; Szabo, Zoltan

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr11h30
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzsvath, Peter Steven-
dc.contributor.authorStipsicz, Andras I.-
dc.contributor.authorSzabo, Zoltan-
dc.date.accessioned2018-07-20T15:07:27Z-
dc.date.available2018-07-20T15:07:27Z-
dc.date.issued2012-09-10en_US
dc.identifier.citationOzsvath, Peter, Stipsicz, Andras I, Szabo, Zoltan. (2012). Combinatorial Heegaard Floer homology and nice Heegaard diagrams. ADVANCES IN MATHEMATICS, 231 (102 - 171. doi:10.1016/j.aim.2012.04.008en_US
dc.identifier.issn0001-8708-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr11h30-
dc.description.abstractWe consider a stabilized version of (HF) over cap of a 3-manifold Y (i.e. the U = 0 variant of Heegaard Floer homology for closed 3-manifolds). We give a combinatorial algorithm for constructing this invariant, starting from a Heegaard decomposition for Y, and give a topological proof of its invariance properties. (C) 2012 Elsevier Inc. All rights reserved.en_US
dc.format.extent102 - 171en_US
dc.language.isoen_USen_US
dc.relation.ispartofADVANCES IN MATHEMATICSen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleCombinatorial Heegaard Floer homology and nice Heegaard diagramsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.aim.2012.04.008-
dc.date.eissued2012-05-31en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1-s2.0-S0001870812001478-main.pdf1.75 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.