Skip to main content

Fitting a Sobolev function to data I

Author(s): Fefferman, Charles L.; Israel, Arie; Luli, Garving

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr11f37
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFefferman, Charles L.-
dc.contributor.authorIsrael, Arie-
dc.contributor.authorLuli, Garving-
dc.date.accessioned2019-12-10T18:02:54Z-
dc.date.available2019-12-10T18:02:54Z-
dc.date.issued2016en_US
dc.identifier.citationFefferman, Charles, Israel, Arie, Luli, Garving. (2016). Fitting a Sobolev function to data I. REVISTA MATEMATICA IBEROAMERICANA, 32 (275 - 376. doi:10.4171/RMI/887en_US
dc.identifier.issn0213-2230-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr11f37-
dc.description.abstractIn this paper and two companion papers, we produce efficient algorithms to solve the following interpolation problem: Let m >= 1 and p > n >= 1. Given a finite set E subset of R-n and a function f : E -> R, compute an extension F of f belonging to the Sobolev space W-m,W-p (R-n) with norm having the smallest possible order of magnitude; secondly, compute the order of magnitude of the norm of F. The combined running time of our algorithms is at most CN log N, where N denotes the cardinality of E, and C depends only on m, n, and p.en_US
dc.format.extent275 - 376en_US
dc.language.isoen_USen_US
dc.relation.ispartofREVISTA MATEMATICA IBEROAMERICANAen_US
dc.rightsAuthor's manuscripten_US
dc.titleFitting a Sobolev function to data Ien_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.4171/RMI/887-
dc.date.eissued2016-02-29en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
FittingSobolevFunctionToData1.pdf679.99 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.