Kauffman states, bordered algebras, and a bigraded knot invariant
Author(s): Ozsvath, Peter Steven; Szabo, Zoltan
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr11996
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ozsvath, Peter Steven | - |
dc.contributor.author | Szabo, Zoltan | - |
dc.date.accessioned | 2019-04-04T22:19:30Z | - |
dc.date.available | 2019-04-04T22:19:30Z | - |
dc.date.issued | 2018-04-13 | en_US |
dc.identifier.citation | Ozsvath, Peter, Szabo, Zoltan. (2018). Kauffman states, bordered algebras, and a bigraded knot invariant. ADVANCES IN MATHEMATICS, 328 (1088 - 1198. doi:10.1016/j.aim.2018.02.017 | en_US |
dc.identifier.issn | 0001-8708 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr11996 | - |
dc.description.abstract | We define and study a bigraded knot invariant whose Euler characteristic is the Alexander polynomial, closely connected to knot Floer homology. The invariant is the homology of a chain complex whose generators correspond to Kauffman states for a knot diagram. The definition uses decompositions of knot diagrams: to a collection of points on the line, we associate a differential graded algebra; to a partial knot diagram, we associate modules over the algebra. The knot invariant is obtained from these modules by an appropriate tensor product. | en_US |
dc.format.extent | 1088 - 1198 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | ADVANCES IN MATHEMATICS | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Kauffman states, bordered algebras, and a bigraded knot invariant | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1016/j.aim.2018.02.017 | - |
dc.date.eissued | 2018-02-22 | en_US |
dc.identifier.eissn | 1090-2082 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1603.06559.pdf | 1.17 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.