Skip to main content

Kauffman states, bordered algebras, and a bigraded knot invariant

Author(s): Ozsvath, Peter Steven; Szabo, Zoltan

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr11996
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzsvath, Peter Steven-
dc.contributor.authorSzabo, Zoltan-
dc.date.accessioned2019-04-04T22:19:30Z-
dc.date.available2019-04-04T22:19:30Z-
dc.date.issued2018-04-13en_US
dc.identifier.citationOzsvath, Peter, Szabo, Zoltan. (2018). Kauffman states, bordered algebras, and a bigraded knot invariant. ADVANCES IN MATHEMATICS, 328 (1088 - 1198. doi:10.1016/j.aim.2018.02.017en_US
dc.identifier.issn0001-8708-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr11996-
dc.description.abstractWe define and study a bigraded knot invariant whose Euler characteristic is the Alexander polynomial, closely connected to knot Floer homology. The invariant is the homology of a chain complex whose generators correspond to Kauffman states for a knot diagram. The definition uses decompositions of knot diagrams: to a collection of points on the line, we associate a differential graded algebra; to a partial knot diagram, we associate modules over the algebra. The knot invariant is obtained from these modules by an appropriate tensor product.en_US
dc.format.extent1088 - 1198en_US
dc.language.isoen_USen_US
dc.relation.ispartofADVANCES IN MATHEMATICSen_US
dc.rightsAuthor's manuscripten_US
dc.titleKauffman states, bordered algebras, and a bigraded knot invarianten_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.aim.2018.02.017-
dc.date.eissued2018-02-22en_US
dc.identifier.eissn1090-2082-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1603.06559.pdf1.17 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.